Deriving an Optimal Noise Adding Mechanism for Privacy-Preserving Machine Learning

被引:12
|
作者
Kumar, Mohit [1 ,2 ]
Rossbory, Michael [2 ]
Moser, Bernhard A. [2 ]
Freudenthaler, Bernhard [2 ]
机构
[1] Univ Rostock, Fac Comp Sci & Elect Engn, Rostock, Germany
[2] Software Competence Ctr Hagenberg, Hagenberg, Austria
基金
欧盟地平线“2020”;
关键词
Privacy; Noise adding mechanism; Machine learning;
D O I
10.1007/978-3-030-27684-3_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Differential privacy is a standard mathematical framework to quantify the degree to which individual privacy in a statistical dataset is preserved. We derive an optimal (epsilon, delta)-differentially private noise adding mechanism for real-valued data matrices meant for the training of models by machine learning algorithms. The aim is to protect a machine learning algorithm from an adversary who seeks to gain an information about the data from algorithm's output by perturbing the value in a sample of the training data. The fundamental issue of trade-off between privacy and utility is addressed by presenting a novel approach consisting of three steps: (1) the sufficient conditions on the probability density function of noise for (epsilon, delta)-differential privacy of a machine learning algorithm are derived; (2) the noise distribution that, for a given level of entropy, minimizes the expected noise magnitude is derived; (3) using entropy level as the design parameter, the optimal entropy level and the corresponding probability density function of the noise are derived.
引用
收藏
页码:108 / 118
页数:11
相关论文
共 50 条
  • [1] Privacy-Preserving Correlated Data Publication with a Noise Adding Mechanism
    Sun, Mingjing
    Zhao, Chengcheng
    He, Jianping
    2020 IEEE 16TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION (ICCA), 2020, : 494 - 499
  • [2] Privacy-Preserving Machine Learning
    Chow, Sherman S. M.
    FRONTIERS IN CYBER SECURITY, 2018, 879 : 3 - 6
  • [3] Privacy-Preserving Machine Learning [Cryptography]
    Kerschbaum, Florian
    Lukas, Nils
    IEEE SECURITY & PRIVACY, 2023, 21 (06) : 90 - 94
  • [4] Survey on Privacy-Preserving Machine Learning
    Liu J.
    Meng X.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2020, 57 (02): : 346 - 362
  • [5] AN EXPLORATION OF FEDERATED LEARNING FOR PRIVACY-PRESERVING MACHINE LEARNING
    Kumar, K. Kiran
    Rao, Thalakola Syamsundara
    Vullam, Nagagopiraju
    Vellela, Sai Srinivas
    Jyosthna, B.
    Farjana, Shaik
    Javvadi, Sravanthi
    2024 5TH INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY, ICITIIT 2024, 2024,
  • [6] Privacy-Preserving Machine Learning on Apache Spark
    Brito, Claudia V.
    Ferreira, Pedro G.
    Portela, Bernardo L.
    Oliveira, Rui C.
    Paulo, Joao T.
    IEEE ACCESS, 2023, 11 : 127907 - 127930
  • [7] Privacy-preserving machine learning with tensor networks
    Pozas-Kerstjens, Alejandro
    Hernandez-Santana, Senaida
    Monturiol, Jose Ramon Pareja
    Lopez, Marco Castrillon
    Scarpa, Giannicola
    Gonzalez-Guillen, Carlos E.
    Perez-Garcia, David
    QUANTUM, 2024, 8
  • [8] Challenges of Privacy-Preserving Machine Learning in IoT
    Zheng, Mengyao
    Xu, Dixing
    Jiang, Linshan
    Gu, Chaojie
    Tan, Rui
    Cheng, Peng
    PROCEEDINGS OF THE 2019 INTERNATIONAL WORKSHOP ON CHALLENGES IN ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR INTERNET OF THINGS (AICHALLENGEIOT '19), 2019, : 1 - 7
  • [9] Differential Privacy-preserving Distributed Machine Learning
    Wang, Xin
    Ishii, Hideaki
    Du, Linkang
    Cheng, Peng
    Chen, Jiming
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 7339 - 7344
  • [10] Privacy-Preserving Machine Learning: Threats and Solutions
    Al-Rubaie, Mohammad
    Chang, J. Morris
    IEEE SECURITY & PRIVACY, 2019, 17 (02) : 49 - 58