A multi-model ensemble digital twin solution for real-time unsteady flow state estimation of a pumping station

被引:7
|
作者
He, Lei [1 ]
Wen, Kai [1 ]
Gong, Jing [1 ]
Wu, Changchun [1 ]
机构
[1] China Univ Petr, Beijing Key Lab Urban Oil & Gas Distribut Technol, Beijing 102249, Peoples R China
基金
中国国家自然科学基金;
关键词
Pumping station; Transient analysis; Generalized predictive control; Model -free adaptive control; Particle swarm optimization; GENERALIZED PREDICTIVE CONTROL; FREE ADAPTIVE-CONTROL; FREQUENCY-RESPONSE; SYSTEM; PIPELINE; OPTIMIZATION; NETWORK; DESIGN;
D O I
10.1016/j.isatra.2021.08.021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a digital twin solution for unsteady flow state estimation in a pumping station. Digital twin is expected to accurately estimate the real-time hydraulic parameters of blind spots of the pumping station system even under some adverse conditions including the interference of observation noise and model parameters drift. To solve these challenges, a digital twin framework integrating the model-driven method, control theory and data-driven method is presented. In this framework, an unsteady flow state estimation method combining frequency domain analysis and generalized predictive control theory is developed for the first time, which is superior to traditional time-domain numerical discrete methods in terms of computational efficiency and anti-noise interference. In the model parameter calibration process, the novelty concerns modeling of the optimization problem considering the dynamic operation control of the station and unsteady flow of pipelines. And this process is accomplished through the comprehensive application of the model-free adaptive control algorithm, the transient flow model and the particle swarm optimization algorithm. This work is applied to a pumping station in a product pipeline to verify its effectiveness in estimating the transient flow state of data blind spots and map the dynamic operation behavior under the interference of colored noise and parameter drift. (C) 2021 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:242 / 253
页数:12
相关论文
共 50 条
  • [1] Real-time monitoring data for real-time multi-model validation: coupling ENSEMBLE and EURDEP
    Galmarini, S.
    Bianconi, R.
    de Vries, G.
    Bellasio, R.
    JOURNAL OF ENVIRONMENTAL RADIOACTIVITY, 2008, 99 (08) : 1233 - 1241
  • [2] Accuracy of real-time multi-model ensemble forecasts for seasonal influenza in the US
    Reich, Nicholas G.
    McGowan, Craig J.
    Yamana, Teresa K.
    Tushar, Abhinav
    Ray, Evan L.
    Osthus, Dave
    Kandula, Sasikiran
    Brooks, Logan C.
    Crawford-Crudell, Willow
    Gibson, Graham Casey
    Moore, Evan
    Silva, Rebecca
    Biggerstaff, Matthew
    Johansson, Michael A.
    Rosenfeld, Roni
    Shaman, Jeffrey
    PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (11)
  • [3] Multi-model Real-time Compressive Tracking
    Zhang Jianming
    Jin Xiaokang
    Wu Honglin
    Wu You
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (10) : 2373 - 2380
  • [4] Real-time multi-model decadal climate predictions
    Smith, Doug M.
    Scaife, Adam A.
    Boer, George J.
    Caian, Mihaela
    Doblas-Reyes, Francisco J.
    Guemas, Virginie
    Hawkins, Ed
    Hazeleger, Wilco
    Hermanson, Leon
    Ho, Chun Kit
    Ishii, Masayoshi
    Kharin, Viatcheslav
    Kimoto, Masahide
    Kirtman, Ben
    Lean, Judith
    Matei, Daniela
    Merryfield, William J.
    Mueller, Wolfgang A.
    Pohlmann, Holger
    Rosati, Anthony
    Wouters, Bert
    Wyser, Klaus
    CLIMATE DYNAMICS, 2013, 41 (11-12) : 2875 - 2888
  • [5] Real-time multi-model decadal climate predictions
    Doug M. Smith
    Adam A. Scaife
    George J. Boer
    Mihaela Caian
    Francisco J. Doblas-Reyes
    Virginie Guemas
    Ed Hawkins
    Wilco Hazeleger
    Leon Hermanson
    Chun Kit Ho
    Masayoshi Ishii
    Viatcheslav Kharin
    Masahide Kimoto
    Ben Kirtman
    Judith Lean
    Daniela Matei
    William J. Merryfield
    Wolfgang A. Müller
    Holger Pohlmann
    Anthony Rosati
    Bert Wouters
    Klaus Wyser
    Climate Dynamics, 2013, 41 : 2875 - 2888
  • [6] Real-time flow forecasting in the absence of quantitative precipitation forecasts: A multi-model approach
    Goswami, Monomoy
    O'Connor, Kieran M.
    JOURNAL OF HYDROLOGY, 2007, 334 (1-2) : 125 - 140
  • [7] Real-time adaptive resource management for multi-model control
    Agrawal, M
    Cofer, D
    Sarnad, T
    PROCEEDINGS OF THE 2001 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2001, : 3451 - 3456
  • [8] Methodology for Real-Time Torque Estimation in a Ship Propulsion Digital Twin
    Purcell, Etienne
    Nejad, Amir R.
    Bekker, Anriette
    JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2025, 147 (02):
  • [9] Real-time monitoring of milling tool state based on digital twin
    Liu M.
    Yue C.
    Xia W.
    Zhang J.
    Liu X.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2023, 29 (06): : 2118 - 2129
  • [10] Predictable Components of ENSO Evolution in Real-time Multi-Model Predictions
    Zhihai Zheng
    Zeng-Zhen Hu
    Michelle L’Heureux
    Scientific Reports, 6