Improved electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode material by reducing lithium residues with the coating of Prussian blue

被引:58
|
作者
Ding, Yan [1 ]
Deng, Bangwei [2 ]
Wang, Hao [1 ]
Li, Xiang [1 ]
Chen, Tao [2 ]
Yan, Xinxiu [2 ]
Wan, Qi [1 ]
Qu, Meizhen [1 ]
Peng, Gongchang [1 ]
机构
[1] Chinese Acad Sci, Chengdu Inst Organ Chem, Chengdu 610041, Sichuan, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; LiNi0.6Co0.2Mn0.2O2; Prussian blue coating; Lithium residues; Storage characteristic; STORAGE CHARACTERISTICS; CYCLING PERFORMANCE; ELECTRODE MATERIALS; AGING MECHANISMS; ION BATTERY; LINI0.8CO0.1MN0.1O2; CAPACITY; STABILITY; LAYER;
D O I
10.1016/j.jallcom.2018.09.286
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Reducing the lithium residues on the surface of LiNi0.6Co0.2Mn0.2O2 (NCM) cathode is one of the most main challenges in Li-ion battery research. To address this task, a surface coating of Prussian blue (PB) of metal-organic framework is applied to NCM cathode to solve this intractable problem via a simple drycoating method. The transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) results show that the uniform smooth coating can provide a protective shell to block H2O and CO2 absorption from the air, suppressing lithium residues formed on the surface. The color change experiment between PB and Li residuals illustrates PB can react directly with surface residual lithium species. As a result, the amount of residual lithium, such as LiOH and Li2CO3, is significantly reduced. The 0.5 wt% PB-modified NCM delivers a high discharge capacity retention of 81% after 500 cycles at 1 C discharge rate and exhibits a superior storage property after storing in air for 14 days. Furthermore, electrochemical impedance spectroscopy (EIS) confirms that the PB-NCM could hinder the impedance increase during cycling. These results clearly indicate that the PB coating layer contributes to the reduction of lithium residues and the creation of thinner cathode-electrolyte interface, improving structural stability and cycling performance of NCM. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:451 / 460
页数:10
相关论文
共 50 条
  • [1] Improved electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode material by reducing lithium residues with the coating of Prussian blue
    Ding, Yan
    Deng, Bangwei
    Wang, Hao
    Li, Xiang
    Chen, Tao
    Yan, Xinxiu
    Wan, Qi
    Qu, Meizhen
    Peng, Gongchang
    Journal of Alloys and Compounds, 2019, 774 : 451 - 460
  • [2] Synthesis and electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode materials
    Zhong Sheng-kui
    Li Wei
    Li Yan-hong
    Zuo Zheng-guang
    Tang Xin
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2009, 19 (06) : 1499 - 1503
  • [3] Synthesis and electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode materials
    钟胜奎
    李伟
    李艳红
    邹正光
    唐鑫
    Transactions of Nonferrous Metals Society of China, 2009, 19 (06) : 1499 - 1503
  • [4] The preparation and electrochemical study of LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion battery
    Xin Tang
    Jing Li
    Min Zeng
    Yeju Huang
    Jianqiang Guo
    Journal of Materials Science: Materials in Electronics, 2020, 31 : 848 - 856
  • [5] The preparation and electrochemical study of LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion battery
    Tang, Xin
    Li, Jing
    Zeng, Min
    Huang, Yeju
    Guo, Jianqiang
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (01) : 848 - 856
  • [6] Synthesis and electrochemical characteristics of layered LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries
    Cao, H
    Zhang, Y
    Zhang, H
    Xia, BJ
    SOLID STATE IONICS, 2005, 176 (13-14) : 1207 - 1211
  • [7] The electrochemical performance of LiNi0.6Co0.2Mn0.2O2 material doped by Ti as cathode for lithium ion battery
    Zhang J.
    Guo X.-D.
    Wu Z.-G.
    Xiang W.
    Gao Xiao Hua Xue Gong Cheng Xue Bao/Journal of Chemical Engineering of Chinese Universities, 2020, 34 (04): : 1053 - 1059
  • [8] Preparation and electrochemical properties of submicron LiNi0.6Co0.2Mn0.2O2 as cathode material for lithium ion batteries
    Yue, Peng
    Wang, Zhixing
    Peng, Wenjie
    Li, Lingjun
    Guo, Huajun
    Li, Xinhai
    Hu, Qiyang
    Zhang, Yunhe
    SCRIPTA MATERIALIA, 2011, 65 (12) : 1077 - 1080
  • [9] Preparation and Electrochemical Performances of Ti Doped LiNi0.6Co0.2Mn0.2O2
    Xu, Yue-bin
    Zhong, Sheng-kui
    Zhang, Qian
    PROCEEDINGS OF THE 7TH NATIONAL CONFERENCE ON CHINESE FUNCTIONAL MATERIALS AND APPLICATIONS (2010), VOLS 1-3, 2010, : 1843 - +
  • [10] The effects of molybdenum doping on LiNi0.6Co0.2Mn0.2O2 cathode material
    Liu, Qi
    Zhao, Zhikun
    Wu, Feng
    Mu, Daobin
    Wang, Lei
    Wu, Borong
    SOLID STATE IONICS, 2019, 337 : 107 - 114