A theorem of H.!Hopf and the Cauchy-Riemann inequality II

被引:3
|
作者
Alencar, Hilario [1 ]
Do Carmo, Manfredo [2 ]
Fernandez, Isabel [3 ]
Tribuzy, Renato [4 ]
机构
[1] Univ Fed Alagoas, Inst Matemat, BR-57072900 Maceio, AL, Brazil
[2] IMPA, BR-22460320 Rio De Janeiro, Brazil
[3] Univ Seville, Dept Matemat Aplicada 1, ETS Ingn Informat, E-41012 Seville, Spain
[4] Univ Fed Amazonas, Inst Ciencias Exatas, Dept Matemat, BR-69077000 Manaus, Amazonas, Brazil
来源
关键词
mean curvature; genus zero surface; Hopf's quadratic form; Cauchy-Riemann inequality;
D O I
10.1007/s00574-007-0058-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is a sequel to "A theorem of H. Hopf and the Cauchy-Riemann inequality" [AdCT]. Here the result of the previous paper is extended (see the precise statement in Section 1 of the present paper) to surfaces in three-dimensional homogeneous Riemannian manifolds whose group of isometries has dimension four and the bundle curvature is nonzero, whereas in the previous paper only the case of vanishing bundle curvature was treated.
引用
收藏
页码:525 / 532
页数:8
相关论文
共 50 条
  • [1] A theorem of H. Hopf and the Cauchy-Riemann inequality II
    Hilário Alencar
    Manfredo do Carmo
    Isabel Fernández*
    Renato Tribuzy
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2007, 38 : 525 - 532
  • [2] A theorem of Hopf and the Cauchy-Riemann inequality
    Alencar, Hilario
    Do Carmo, Manfredo
    Tribuzy, Renato
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2007, 15 (02) : 283 - 298
  • [3] THE CONVERGENCE OF CAUCHY-RIEMANN SUMS TO CAUCHY-RIEMANN INTEGRALS
    SZASZ, O
    TODD, J
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 54 (11) : 1071 - 1071
  • [4] CONVERGENCE OF CAUCHY-RIEMANN SUMS TO CAUCHY-RIEMANN INTEGRALS
    SZASZ, O
    TODD, J
    [J]. JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1951, 47 (03): : 191 - 196
  • [5] CAUCHY-RIEMANN OPERATOR
    EBERLEIN, WF
    [J]. AMERICAN JOURNAL OF PHYSICS, 1967, 35 (01) : 53 - &
  • [6] Cauchy-Riemann beams
    Moya-Cessa, H. M.
    Ramos-Prieto, I.
    Sanchez-de-la-Llave, D.
    Ruiz, U.
    Arrizon, V.
    Soto-Eguibar, F.
    [J]. PHYSICAL REVIEW A, 2024, 109 (04)
  • [7] A Positive Mass Theorem in Three Dimensional Cauchy-Riemann Geometry
    Cheng, Jih-Hsin
    Malchiodi, Andrea
    Yang, Paul
    [J]. Extended Abstracts Fall 2013: Geometrical Analysis; Type Theory, Homotopy Theory and Univalent Foundations, 2015, : 3 - 8
  • [8] Concerning Green's theorem and the Cauchy-Riemann differential equations
    Porter, MB
    [J]. ANNALS OF MATHEMATICS, 1905, 7 : 1 - 2
  • [9] A positive mass theorem in three dimensional Cauchy-Riemann geometry
    Cheng, Jih-Hsin
    Malchiodi, Andrea
    Yang, Paul
    [J]. ADVANCES IN MATHEMATICS, 2017, 308 : 276 - 347
  • [10] LIOUVILLES THEOREM FOR INDUCED CAUCHY-RIEMANN OPERATORS ON HYPERSURFACES OF CN
    HUNT, LR
    MURRAY, JJ
    STRAUSS, MJ
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (07): : A675 - A675