Integrating Prosodic Features in Extractive Meeting Summarization

被引:17
|
作者
Xie, Shasha [1 ,2 ]
Hakkani-Tuer, Dilek [2 ]
Favre, Benoit [2 ]
Liu, Yang [1 ]
机构
[1] Univ Texas Dallas, Dept Comp Sci, Richardson, TX 75083 USA
[2] Int Comp Sci Inst, Berkeley, CA USA
关键词
D O I
10.1109/ASRU.2009.5373302
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Speech contains additional information than text that can be valuable for automatic speech summarization. In this paper, we evaluate how to effectively use acoustic/prosodic features for extractive meeting summarization, and how to integrate prosodic features with lexical and structural information for further improvement. To properly represent prosodic features, we propose different normalization methods based on speaker, topic, or local context information. Our experimental results show that using only the prosodic features we achieve better performance than using the non-prosodic information on both the human transcripts and recognition output. In addition, a decision-level combination of the prosodic and non-prosodic features yields further gain, outperforming the individual models.
引用
收藏
页码:387 / +
页数:2
相关论文
共 50 条
  • [1] EVALUATING THE EFFECTIVENESS OF FEATURES AND SAMPLING IN EXTRACTIVE MEETING SUMMARIZATION
    Xie, Shasha
    Liu, Yang
    Lin, Hui
    [J]. 2008 IEEE WORKSHOP ON SPOKEN LANGUAGE TECHNOLOGY: SLT 2008, PROCEEDINGS, 2008, : 157 - +
  • [2] Extractive Text Summarization Using Topological Features
    Kumar, Ankit
    Sarkar, Apurba
    [J]. COMBINATORIAL IMAGE ANALYSIS, IWCIA 2022, 2023, 13348 : 105 - 121
  • [3] Integrating Extractive and Abstractive Models for Long Text Summarization
    Wang, Shuai
    Zhao, Xiang
    Li, Bo
    Ge, Bin
    Tang, Daquan
    [J]. 2017 IEEE 6TH INTERNATIONAL CONGRESS ON BIG DATA (BIGDATA CONGRESS 2017), 2017, : 305 - 312
  • [4] Fusing Verbal and Nonverbal Information for Extractive Meeting Summarization
    Nihei, Fumio
    Nakano, Yukiko I.
    Takase, Yutaka
    [J]. PROCEEDINGS OF THE GROUP INTERACTION FRONTIERS IN TECHNOLOGY (GIFT'18), 2018,
  • [5] Automatic Extractive Summarization on Indonesian Parliamentary Meeting Minutes
    Yulyanto, Mochamad Try
    Khodra, Masayu Leylia
    [J]. 2017 4TH INTERNATIONAL CONFERENCE ON ADVANCED INFORMATICS, CONCEPTS, THEORY, AND APPLICATIONS (ICAICTA) PROCEEDINGS, 2017,
  • [6] ESSumm: Extractive Speech Summarization from Untranscribed Meeting
    Wang, Jun
    [J]. INTERSPEECH 2022, 2022, : 3243 - 3247
  • [7] Extractive Meeting Summarization through speaker zone detection
    Bokaei, Mohammad Hadi
    Sameti, Hossein
    Liu, Yang
    [J]. 16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 2724 - 2728
  • [8] Optimal Features Set For Extractive Automatic Text Summarization
    Meena, Yogesh Kumar
    Deolia, Peeyush
    Gopalani, Dinesh
    [J]. 2015 5TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING & COMMUNICATION TECHNOLOGIES ACCT 2015, 2015, : 35 - 40
  • [9] Language features in extractive summarization: Humans Vs. Machines
    Arroyo-Fernandez, Ignacio
    Curiel, Arturo
    Mendez-Cruz, Carlos-Francisco
    [J]. KNOWLEDGE-BASED SYSTEMS, 2019, 180 : 1 - 11
  • [10] Abstractive Summarization with the Aid of Extractive Summarization
    Chen, Yangbin
    Ma, Yun
    Mao, Xudong
    Li, Qing
    [J]. WEB AND BIG DATA (APWEB-WAIM 2018), PT I, 2018, 10987 : 3 - 15