Controlling Proton-Coupled Electron Transfer in Bioinspired Artificial Photosynthetic Relays

被引:53
|
作者
Odella, Emmanuel [1 ]
Mora, S. Jimena [1 ]
Wadsworth, Brian L. [1 ]
Huynh, Mioy T. [2 ]
Goings, Joshua J. [2 ]
Liddell, Paul A. [1 ]
Groy, Thomas L. [1 ]
Gervaldo, Miguel [3 ]
Sereno, Leonides E. [3 ]
Gust, Devens [1 ]
Moore, Thomas A. [1 ]
Moore, Gary F. [1 ]
Hammes-Schiffer, Sharon [2 ]
Moore, Ana L. [1 ]
机构
[1] Arizona State Univ, Sch Mol Sci, Tempe, AZ 85287 USA
[2] Yale Univ, Dept Chem, 225 Prospect St, New Haven, CT 06520 USA
[3] Univ Nacl Rio Cuarto, Dept Quim, Fac Ciencias Exactas Fis Quim & Nat, Agencia Postal 3, RA-5800 Rio Cuarto, Cordoba, Argentina
关键词
PHOTOSYSTEM-II; INFRARED-SPECTRA; SPECTROSCOPIC PROPERTIES; VIBRATIONAL-SPECTRA; WATER OXIDATION; C=N; MODEL; SITE; BENZYLIDENEANILINE; ENERGIES;
D O I
10.1021/jacs.8b09724
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bioinspired constructs consisting of benzimidazole-phenol moieties bearing N-phenylimines as proton-accepting substituents have been designed to mimic the H-bond network associated with the Tyr(z)-His190 redox relay in photosystem II. These compounds provide a platform to theoretically and experimentally explore and expand proton coupled electron transfer (PCET) processes. The models feature H-bonds between the phenol and the nitrogen at the 3-position of the benzimidazole and between the 1H-benzimidazole proton and the imine nitrogen. Protonation of the benzimidazole and the imine can be unambiguously detected by infrared spectroelectrochemistry (IRSEC) upon oxidation of the phenol. DFT calculations and IRSEC results demonstrate that with sufficiently strong electron-donating groups at the para-position of the N-phenylimine group (e.g., -OCH3 substitution), proton transfer to the imine is exergonic upon phenol oxidation, leading to a one-electron, two-proton (E2PT) product with the imidazole acting as a proton relay. When transfer of the second proton is not sufficiently exergonic (e.g., -CN substitution), a one-electron, one-proton transfer (EPT) product is dominant. Thus, the extent of proton translocation along the H-bond network, either similar to 1.6 angstrom or similar to 6.4 angstrom, can be controlled through imine substitution. Moreover, the H-bond strength between the benzimidazole NH and the imine nitrogen, which is a function of their relative plc values, and the redox potential of the phenoxyl radical/phenol couple are linearly correlated with the Hammett constants of the substituents. In all cases, a high potential (similar to 1 V vs SCE) is observed for the phenoxyl radical/phenol couple. Designing and tuning redoxcoupled proton wires is important for understanding bioenergetics and developing novel artificial photosynthetic systems.
引用
收藏
页码:15450 / 15460
页数:11
相关论文
共 50 条
  • [2] Proton-Coupled Electron Transfer in Artificial Photosynthetic Systems
    Mora, S. Jimena
    Odella, Emmanuel
    Moore, Gary F.
    Gust, Devens
    Moore, Thomas A.
    Moore, Ana L.
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2018, 51 (02) : 445 - 453
  • [3] HYSCORE and DFT Studies of Proton-Coupled Electron Transfer in a Bioinspired Artificial Photosynthetic Reaction Center
    Mendez-Hernandez, Dalvin D.
    Baldansuren, Amgalanbaatar
    Kalendra, Vidmantas
    Charles, Philip
    Mark, Brian
    Marshall, William
    Molnar, Brian
    Moore, Thomas A.
    Lakshmi, K. V.
    Moore, Ana L.
    [J]. ISCIENCE, 2020, 23 (08)
  • [4] Understanding the Mechanism of Proton-Coupled Electron Transfer in the Bioinspired Artificial Photosynthetic Mimic, Benzimidazole Phenol Porphyrin
    Marshall, William
    Mark, Brian
    Kalendra, Vidmantas
    Mendez-Hernandez, Dalvin D.
    Poluektov, Oleg G.
    Moore, Thomas A.
    Moore, Ana L.
    Lakshmi, K. V.
    [J]. BIOPHYSICAL JOURNAL, 2019, 116 (03) : 418A - 418A
  • [5] Understanding the Mechanism of Proton-Coupled Electron Transfer in the Bioinspired Artificial Photosynthetic Mimic, Benzimidazole Phenol Porphyrin
    Lakshmi, K. V.
    Mendez-Hernandez, Dalvin D.
    Baldansuren, Amgalanbaatar
    Kalendra, Vidmantas
    Charles, Philip
    Mark, Brian
    Marshall, William
    Molnar, Brian
    Moore, Thomas A.
    Moore, Ana L.
    [J]. BIOPHYSICAL JOURNAL, 2021, 120 (03) : 172A - 172A
  • [6] Proton-coupled electron transfer: Proton relays and ultrafast dynamics
    Hammes-Schiffer, Sharon
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [7] Recent advances in bioinspired proton-coupled electron transfer
    Pannwitz, Andrea
    Wenger, Oliver S.
    [J]. DALTON TRANSACTIONS, 2019, 48 (18) : 5861 - 5868
  • [8] Theoretical Analysis of Proton Relays in Electrochemical Proton-Coupled Electron Transfer
    Auer, Benjamin
    Fernandez, Laura E.
    Hammes-Schiffer, Sharon
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (21) : 8282 - 8292
  • [9] Proton-coupled electron transfer across benzimidazole bridges in bioinspired proton wires
    Odella, Emmanuel
    Mora, S. Jimena
    Wadsworth, Brian L.
    Goings, Joshua J.
    Gervaldo, Miguel A.
    Sereno, Leonides E.
    Groy, Thomas L.
    Gust, Devens
    Moore, Thomas A.
    Moore, Gary F.
    Hammes-Schiffer, Sharon
    Moore, Ana L.
    [J]. CHEMICAL SCIENCE, 2020, 11 (15) : 3820 - 3828
  • [10] Proton-coupled electron transfer in natural and artificial photosynthesis
    Barroso, M.
    Arnaut, Luis G.
    Formosinho, Sebastiao J.
    [J]. RSC Catalysis Series, 2012, : 126 - 151