CONVERGENCE OF TANDEM BROWNIAN QUEUES

被引:1
|
作者
Lopez, Sergio I. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Dept Matemat, Av Univ 3000, Mexico City 04510, DF, Mexico
关键词
Brownian queue; tandem queues; Burke's theorem; OUTPUT;
D O I
10.1017/jpr.2016.22
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is known that in a stationary Brownian queue with both arrival and service processes equal in law to Brownian motion, the departure process is a Brownian motion, identical in law to the arrival process: this is the analogue of Burke's theorem in this context. In this paper we prove convergence in law to this Brownian motion in a tandem network of Brownian queues: if we have an arbitrary continuous process, satisfying some mild conditions, as an initial arrival process and pass it through an infinite tandem network of queues, the resulting process weakly converges to a Brownian motion. We assume independent and exponential initial workloads for all queues.
引用
收藏
页码:585 / 592
页数:8
相关论文
共 50 条
  • [1] Tandem Brownian queues
    P. Lieshout
    M. Mandjes
    Mathematical Methods of Operations Research, 2007, 66 : 275 - 298
  • [2] Tandem Brownian queues
    Lieshout, P.
    Mandjes, M.
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2007, 66 (02) : 275 - 298
  • [3] Attractiveness of Brownian queues in tandem
    Eric A. Cator
    Sergio I. López
    Leandro P. R. Pimentel
    Queueing Systems, 2019, 92 : 25 - 45
  • [4] Attractiveness of Brownian queues in tandem
    Cator, Eric A.
    Lopez, Sergio I.
    Pimentel, Leandro P. R.
    QUEUEING SYSTEMS, 2019, 92 (1-2) : 25 - 45
  • [5] Convergence of departures in tandem networks of center dot/GI/infinity queues
    Prabhakar, B
    Mountford, TS
    Bambos, N
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 1996, 10 (04) : 487 - 500
  • [6] ON QUEUES IN TANDEM
    MASTERSON, GE
    SHERMAN, S
    ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (01): : 239 - 239
  • [7] ON QUEUES IN TANDEM
    MASTERSON, GE
    SHERMAN, S
    ANNALS OF MATHEMATICAL STATISTICS, 1963, 34 (01): : 300 - &
  • [8] On the order of tandem queues
    Cheng, DW
    Righter, R
    QUEUEING SYSTEMS, 1995, 21 (1-2) : 143 - 160
  • [9] REGENERATION IN TANDEM QUEUES
    NUMMELIN, E
    ADVANCES IN APPLIED PROBABILITY, 1981, 13 (01) : 221 - 230
  • [10] Moments in tandem queues
    Scheller-Wolf, A
    Sigman, K
    OPERATIONS RESEARCH, 1998, 46 (03) : 378 - 380