Spaceborne SAR data for global urban mapping at 30 m resolution using a robust urban extractor

被引:82
|
作者
Ban, Yifang [1 ]
Jacob, Alexander [1 ]
Gamba, Paolo [2 ]
机构
[1] KTH Royal Inst Technol, Stockholm, Sweden
[2] Univ Pavia, I-27100 Pavia, Italy
关键词
KTH-Pavia Urban Extractor; Spaceborne SAR; ENVISAT ASAR; Global Urban Mapping; 30 m Resolution; Spatial Indices; GLCM Textures; LANDSAT; CLASSIFICATION; CHINA; URBANIZATION;
D O I
10.1016/j.isprsjprs.2014.08.004
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
With more than half of the world population now living in cities and 1.4 billion more people expected to move into cities by 2030, urban areas pose significant challenges on local, regional and global environment. Timely and accurate information on spatial distributions and temporal changes of urban areas are therefore needed to support sustainable development and environmental change research. The objective of this research is to evaluate spaceborne SAR data for improved global urban mapping using a robust processing chain, the KTH-Pavia Urban Extractor. The proposed processing chain includes urban extraction based on spatial indices and Grey Level Co-occurrence Matrix (GLCM) textures, an existing method and several improvements i.e., SAR data preprocessing, enhancement, and post-processing. ENVISAT Advanced Synthetic Aperture Radar (ASAR) C-VV data at 30 m resolution were selected over 10 global cities and a rural area from six continents to demonstrate the robustness of the improved method. The results show that the KTH-Pavia Urban Extractor is effective in extracting urban areas and small towns from ENVISAT ASAR data and built-up areas can be mapped at 30 m resolution with very good accuracy using only one or two SAR images. These findings indicate that operational global urban mapping is possible with spacebome SAR data, especially with the launch of Sentinel-1 that provides SAR data with global coverage, operational reliability and quick data delivery. (C) 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:28 / 37
页数:10
相关论文
共 50 条
  • [1] Spaceborne SAR Data for Regional Urban Mapping Using a Robust Building Extractor
    Li, Juanjuan
    Zhang, Hong
    Wang, Chao
    Wu, Fan
    Li, Lu
    [J]. REMOTE SENSING, 2020, 12 (17) : 1 - 20
  • [2] PROBABILISTIC URBAN FLOOD MAPPING USING SAR DATA
    Chini, Marco
    Hostache, Renaud
    Pelich, Ramona
    Matgen, Patrick
    Pulvirenti, Luca
    Pierdicca, Nazzareno
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 4643 - 4645
  • [3] Very High Resolution Spaceborne SAR Tomography in Urban Environment
    Zhu, Xiao Xiang
    Bamler, Richard
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (12): : 4296 - 4308
  • [4] Urban Damage Mapping Using Fully Polarimetric SAR Data
    Chen, Si-Wei
    Wang, Xue-Song
    Xiao, Shun-Ping
    Su, Yi
    [J]. 2018 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS-TOYAMA), 2018, : 2239 - 2244
  • [5] Multitemporal Spaceborne SAR Data for Urban Change Detection in China
    Ban, Yifang
    Yousif, Osama A.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (04) : 1087 - 1094
  • [6] A SPACEBORNE SAR RAW DATA SIMULATION METHOD FOR URBAN SCENES
    Deng, Jia
    Jiao, Runzhi
    Han, Yaquan
    Wang, Chuxin
    Ma, Qian
    Huang, Haifeng
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7715 - 7718
  • [7] SENTINEL-1A SAR DATA FOR GLOBAL URBAN MAPPING: PRELIMINARY RESULTS
    Jacob, Alexander
    Ban, Yifang
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 1179 - 1182
  • [8] Water vapour distribution at urban scale using high-resolution numerical weather model and spaceborne SAR interferometric data
    Pichelli, E.
    Ferretti, R.
    Cimini, D.
    Perissin, D.
    Montopoli, M.
    Marzano, F. S.
    Pierdicca, N.
    [J]. NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2010, 10 (01) : 121 - 132
  • [9] Urban Aerodynamic Roughness Length Mapping Using Multitemporal SAR Data
    Zhang, Fengli
    Sha, Minmin
    Wang, Guojun
    Li, Zhikun
    Shao, Yun
    [J]. ADVANCES IN METEOROLOGY, 2017, 2017
  • [10] URBAN BOUNDARY MAPPING USING SENTINEL-1A SAR DATA
    Storie, Christopher D.
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2960 - 2963