Approximating a shortest watchman route

被引:0
|
作者
Nilsson, BJ [1 ]
机构
[1] Malmo Univ Coll, Dept Technol & Soc, S-20506 Malmo, Sweden
关键词
computational geometry; art gallery problems; visibility; watchman routes;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a fast algorithm for computing a watchman route in a simple polygon that is at most a constant factor longer than the shortest watchman route. The algorithm runs in O(n log n) time as compared to the best known algorithm that computes a shortest watchman route which runs in O(n(6)) time.
引用
收藏
页码:253 / 281
页数:29
相关论文
共 50 条
  • [1] Finding the Shortest Watchman Route in a Simple Polygon
    S. Carlsson
    H. Jonsson
    B. J. Nilsson
    [J]. Discrete & Computational Geometry, 1999, 22 : 377 - 402
  • [2] Finding the shortest watchman route in a simple polygon
    Carlsson, S
    Jonsson, H
    Nilsson, BJ
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1999, 22 (03) : 377 - 402
  • [3] An improved algorithm for computing a shortest watchman route for lines
    Tan, Xuehou
    Jiang, Bo
    [J]. INFORMATION PROCESSING LETTERS, 2018, 131 : 51 - 54
  • [4] Concerning the time bounds of existing shortest watchman route algorithms
    Hammar, M
    Nilsson, BJ
    [J]. FUNDAMENTALS OF COMPUTATION THEORY, PROCEEDINGS, 1997, 1279 : 210 - 221
  • [5] Approximating Watchman Routes
    Mitchell, Joseph S. B.
    [J]. PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA 2013), 2013, : 844 - 855
  • [6] Approximating shortest superstrings
    Teng, SH
    Yao, FF
    [J]. SIAM JOURNAL ON COMPUTING, 1997, 26 (02) : 410 - 417
  • [7] SHORTEST WATCHMAN ROUTES IN SIMPLE POLYGONS
    CHIN, WP
    NTAFOS, S
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (01) : 9 - 31
  • [8] AN INCREMENTAL ALGORITHM FOR CONSTRUCTING SHORTEST WATCHMAN ROUTES
    TAN, XH
    HIRATA, T
    INAGAKI, Y
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1991, 557 : 163 - 175
  • [9] Approximating Shortest Paths in Graphs
    Sen, Sandeep
    [J]. WALCOM: ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2009, 5431 : 32 - 43
  • [10] APPROXIMATING SHORTEST SUPERSTRINGS WITH CONSTRAINTS
    JIANG, T
    LI, M
    [J]. THEORETICAL COMPUTER SCIENCE, 1994, 134 (02) : 473 - 491