Effects of fibres on ultra-lightweight high strength concrete: Dynamic behaviour and microstructures

被引:38
|
作者
Zhang, Baifa [1 ]
Feng, Yuan [1 ]
Xie, Jianhe [1 ]
He, Jianhua [1 ]
Zhang, Yonglei [2 ,3 ]
Cai, Chaojun [1 ]
Huang, Dongchao [1 ]
Li, Lijuan [1 ]
机构
[1] Guangdong Univ Technol, Sch Civil & Transportat Engn, Guangzhou 510006, Guangdong, Peoples R China
[2] Chinese Acad Sci, Guangzhou Inst Geochem, Inst Earth Sci, CAS Key Lab Mineral & Metallogeny,Guangdong Prov, Guangzhou 510640, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Ultra-lightweight high strength concrete; Dynamic compressive behaviours; Fibres; Microstructures; High strain rate; Dynamic increase factor; MECHANICAL-PROPERTIES; STEEL FIBER; COMPRESSIVE BEHAVIOR; REINFORCED CONCRETE; CEMENT COMPOSITES; STRAIN-RATE; FLY-ASH; AGGREGATE CONCRETE; IMPACT BEHAVIOR; PERFORMANCE;
D O I
10.1016/j.cemconcomp.2022.104417
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The use of ultra-lightweight high strength concrete (ULHSC) for prefabricated structures has been recognized as a promising method of construction. Adding fibres commonly enhances the mechanical properties of ULHSC but increases its density. In order to balance the strength and self-weight of ULHSC with different fibres, an extensive investigation was carried out to understand the effects of fibre incorporation on ULHSC made with fly ash cenospheres. This study focuses on the dynamic compressive response and failure mechanism of ULHSC with varied fibre contents. Impact tests were conducted by using a phi 100-mm splitting Hopkinson pressure bar apparatus with different strain rates ranging from approximately 20 s-1 to 120 s-1. The results showed that the compressive properties of ULHSC exhibited a strong strain rate dependency, and the addition of fibres increased the strain rate sensitivity of ULHSC, especially at high strain rates. It was interesting to find that the dynamic compressive strength increased with increasing fibre content, and the dynamic increase factor (DIF) showed the same tendency. These findings indicated that the tested ULHSC with 1 vol% end-hooked steel fibre maintained an excellent balance between the dynamic strength and density. Finally, a recalibrated model considering the effect of fibres was proposed to predict the DIFs of ULHSCs under impact loads.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] DESIGN AND TESTING OF ULTRA-LIGHTWEIGHT HIGH STRENGTH CONCRETE
    Shi, Cai-Jun
    [J]. PROCEEDINGS OF THE TENTH INTERNATIONAL SYMPOSIUM ON STRUCTURAL ENGINEERING FOR YOUNG EXPERTS, VOLS I AND II, 2008, : 80 - 84
  • [2] Probabilistic flexural fatigue strength of ultra-lightweight cement concrete and high strength lightweight aggregate concrete
    Zhang, Youyou
    Sun, Qing
    Xin, Haohui
    Liu, Yuqing
    Correia, Jose A. F. O.
    Berto, Filippo
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2022, 158
  • [3] Flexural fatigue behavior of ultra-lightweight cement composite and high strength lightweight aggregate concrete
    Sohel, K. M. A.
    Al-Jabri, K.
    Zhang, M. H.
    Liew, J. Y. Richard
    [J]. CONSTRUCTION AND BUILDING MATERIALS, 2018, 173 : 90 - 100
  • [4] Strategies to increase the compressive strength of ultra-lightweight foamed concrete
    Falliano, Devid
    Restuccia, Luciana
    Ferro, Giuseppe Andrea
    Gugliandolo, Ernesto
    [J]. 1ST VIRTUAL EUROPEAN CONFERENCE ON FRACTURE - VECF1, 2020, 28 : 1673 - 1678
  • [5] Influence of ultra-lightweight foamed glass aggregate on the strength aspects of lightweight concrete
    Sharma, Lovneesh
    Taak, Nileshwar
    Bhandari, Mohit
    [J]. MATERIALS TODAY-PROCEEDINGS, 2021, 45 : 3240 - 3246
  • [6] Properties and applications of ultra-lightweight concrete
    Shi, Caijun
    [J]. 2006 XI'AN INTERNATIONAL CONFERENCE OF ARCHITECTURE AND TECHNOLOGY, PROCEEDINGS: ARCHITECTURE IN HARMONY, 2006, : 523 - 528
  • [7] Development of Ultra-Lightweight and High Strength Engineered Cementitious Composites
    Chen, Zhitao
    Li, Junxia
    Yang, En-Hua
    [J]. JOURNAL OF COMPOSITES SCIENCE, 2021, 5 (04):
  • [8] Behavior and properties of ultra-lightweight concrete with foamed glass aggregate and cellulose fibres under high temperature loading
    Bubenik, Jan
    Zach, Jiri
    Krizova, Klara
    Novak, Vitezslav
    Sedlmajer, Martin
    Zizkova, Nikol
    [J]. JOURNAL OF BUILDING ENGINEERING, 2023, 72
  • [9] Bond strength behaviour of high strength structural lightweight concrete containing steel fibres with different geometries
    Rady, Shirin
    Al-Sibahy, Adnan
    [J]. INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2023, 8 (06)
  • [10] Bond strength behaviour of high strength structural lightweight concrete containing steel fibres with different geometries
    Shirin Rady
    Adnan Al-Sibahy
    [J]. Innovative Infrastructure Solutions, 2023, 8