Genomic landscape of colorectal carcinogenesis

被引:23
|
作者
Kim, Jin Cheon [1 ,2 ,3 ]
Bodmer, Walter F. [4 ]
机构
[1] Univ Ulsan, Dept Surg, Coll Med, 88,Olymp Ro 43 Gil, Seoul 05505, South Korea
[2] Asan Med Ctr, 88,Olymp Ro 43 Gil, Seoul 05505, South Korea
[3] Asan Med Ctr, Asan Inst Life Sci, Lab Canc Biol & Genet, Seoul, South Korea
[4] Univ Oxford, John Radcliffe Hosp, Weatherall Inst Mol Med, Canc & Immunogenet Lab, Oxford OX3 9DS, England
关键词
Colorectal cancer; Carcinogenesis; Routes; Pathway; Hereditary; Genome; Epigenome; CONSENSUS MOLECULAR SUBTYPES; FAMILIAL ADENOMATOUS POLYPOSIS; SIGNALING PATHWAY; TUMOR LOCATION; LYNCH SYNDROME; CANCER; MUTATIONS; GERMLINE; GENE; PHENOTYPE;
D O I
10.1007/s00432-021-03888-w
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose The molecular pathogenesis of solid tumour was first assessed in colorectal cancer (CRC). To date, <= 100 genes with somatic alterations have been found to inter-connectively promote neoplastic transformation through specific pathways. The process of colorectal carcinogenesis via genome landscape is reviewed on the basis of an adenoma-to-carcinoma sequence, as shown by serial histological and epidemiological observations. Methods The relevant literatures from PubMed (1980-2021) have been reviewed for this article. Results The major routes of CRC development, chromosomal instability (CIN), microsatellite instability (MSI), and the serrated route either via CIN or MSI, proceed through the respective molecular pathway of colorectal carcinogenesis. Particular aspects of CRC carcinogenesis can also be determined by evaluating familial CRCs (FCRC) and genotype-phenotype correlations. Specific causative gene alterations still leave to be identified in several FCRCs. Otherwise, recently verified FCRC can be particularly notable, for example, EPCAM-associated Lynch syndrome, polymerase proofreading-associated polyposis, RNF43-associated polyposis syndrome or NTHL1 tumour syndrome, and hereditary mixed polyposis syndrome. The oncogenic landscape is described, including representative pathway genes, the three routes of carcinogenesis, familial CRCs, genotype-phenotype correlations, the identification of causative genes, and consensus molecular subtypes (CMS). Conclusion Whole genome research using multi-gene panels (MGPs) has facilitated high through-put detection of previously unidentified genes involved in colorectal carcinogenesis. New approaches designed to identify rare variants are recommended to consider their alterations implicated in the molecular pathogenesis.
引用
收藏
页码:533 / 545
页数:13
相关论文
共 50 条
  • [1] Genomic landscape of colorectal carcinogenesis
    Jin Cheon Kim
    Walter F. Bodmer
    Journal of Cancer Research and Clinical Oncology, 2022, 148 : 533 - 545
  • [2] Genomic Instability and Epigenetic Alteration in Colorectal Carcinogenesis
    Kim, Young-Ho
    INTESTINAL RESEARCH, 2007, 5 (02) : 111 - 121
  • [3] Surveying the Genomic Landscape of Colorectal Cancer
    Hemminki, Kari
    Foerst, Asta
    Bermejo, Justo Lorenzo
    AMERICAN JOURNAL OF GASTROENTEROLOGY, 2009, 104 (03): : 789 - 790
  • [4] Genomic Landscape of Colorectal Mucosa and Adenomas
    Borras, Ester
    San Lucas, F. Anthony
    Chang, Kyle
    Zhou, Ruoji
    Masand, Gita
    Fowler, Jerry
    Mork, Maureen E.
    You, Y. Nancy
    Taggart, Melissa W.
    McAllister, Florencia
    Jones, David A.
    Davies, Gareth E.
    Edelmann, Winfried
    Ehli, Erik A.
    Lynch, Patrick M.
    Hawk, Ernest T.
    Capella, Gabriel
    Scheet, Paul
    Vilar, Eduardo
    CANCER PREVENTION RESEARCH, 2016, 9 (06) : 417 - 427
  • [5] Genomic landscape of metastatic colorectal cancer
    Josien C. Haan
    Mariette Labots
    Christian Rausch
    Miriam Koopman
    Jolien Tol
    Leonie J. M. Mekenkamp
    Mark A. van de Wiel
    Danielle Israeli
    Hendrik F. van Essen
    Nicole C. T. van Grieken
    Quirinus J. M. Voorham
    Linda J. W. Bosch
    Xueping Qu
    Omar Kabbarah
    Henk M. W. Verheul
    Iris D. Nagtegaal
    Cornelis J. A. Punt
    Bauke Ylstra
    Gerrit A. Meijer
    Nature Communications, 5
  • [6] Characterizing the genomic landscape of colorectal cancer
    Hindson, Jordan
    NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2024, 21 (10) : 667 - 667
  • [7] Genomic landscape of metastatic colorectal cancer
    Haan, Josien C.
    Labots, Mariette
    Rausch, Christian
    Koopman, Miriam
    Tol, Jolien
    Mekenkamp, Leonie J. M.
    van de Wiel, Mark A.
    Israeli, Danielle
    van Essen, Hendrik F.
    van Grieken, Nicole C. T.
    Voorham, Quirinus J. M.
    Bosch, Linda J. W.
    Qu, Xueping
    Kabbarah, Omar
    Verheul, Henk M. W.
    Nagtegaal, Iris D.
    Punt, Cornelis J. A.
    Ylstra, Bauke
    Meijer, Gerrit A.
    NATURE COMMUNICATIONS, 2014, 5
  • [8] Genomic instability, DNA methylation, and natural selection in colorectal carcinogenesis
    Breivik, J
    Gaudernack, G
    SEMINARS IN CANCER BIOLOGY, 1999, 9 (04) : 245 - 254
  • [9] The genomic landscape of response to EGFR blockade in colorectal cancer
    Andrea Bertotti
    Eniko Papp
    Siân Jones
    Vilmos Adleff
    Valsamo Anagnostou
    Barbara Lupo
    Mark Sausen
    Jillian Phallen
    Carolyn A. Hruban
    Collin Tokheim
    Noushin Niknafs
    Monica Nesselbush
    Karli Lytle
    Francesco Sassi
    Francesca Cottino
    Giorgia Migliardi
    Eugenia R. Zanella
    Dario Ribero
    Nadia Russolillo
    Alfredo Mellano
    Andrea Muratore
    Gianluca Paraluppi
    Mauro Salizzoni
    Silvia Marsoni
    Michael Kragh
    Johan Lantto
    Andrea Cassingena
    Qing Kay Li
    Rachel Karchin
    Robert Scharpf
    Andrea Sartore-Bianchi
    Salvatore Siena
    Luis A. Diaz
    Livio Trusolino
    Victor E. Velculescu
    Nature, 2015, 526 : 263 - 267
  • [10] Genomic landscape of treatment refractory metastatic colorectal cancer
    Eefsen, R. L.
    Simonsen, K. S.
    Grundtvig, P.
    Klarskov, L.
    Chen, I. M.
    Hogdall, D.
    Jensen, B., V
    Lorentzen, T.
    Poulsen, T. S.
    Theile, S.
    Nielsen, D.
    Hogdall, E.
    ACTA ONCOLOGICA, 2021, 60 (12) : 1621 - 1628