Magnetotransport Studies of Encapsulated Topological Insulator Bi2Se3 Nanoribbons

被引:3
|
作者
Kunakova, Gunta [1 ]
Kauranens, Edijs [1 ]
Niherysh, Kiryl [1 ,2 ]
Bechelany, Mikhael [3 ]
Smits, Krisjanis [4 ]
Mozolevskis, Gatis [4 ]
Bauch, Thilo [5 ]
Lombardi, Floriana [5 ]
Erts, Donats [1 ]
机构
[1] Univ Latvia, Inst Chem Phys, 19 Raina Blvd, LV-1586 Riga, Latvia
[2] Belarusian State Univ Informat & Radioelect, Dept Res & Dev, Integrated Micro & Nanosyst, P Brovki Str 6, Minsk 220013, BELARUS
[3] Univ Montpellier, Inst Europeen Membranes, ENSCM, CNRS,UMR 5635, F-34095 Montpellier, France
[4] Univ Latvia, Inst Solid State Phys, Kengaraga 8, LV-1063 Riga, Latvia
[5] Chalmers Univ Technol, Dept Microtechnol & Nanosci, Quantum Device Phys Lab, SE-41296 Gothenburg, Sweden
关键词
Bi2Se3; nanoribbons; ZnO; magnetotransport; SURFACE-STATES; BI2TE3;
D O I
10.3390/nano12050768
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The majority of proposed exotic applications employing 3D topological insulators require high-quality materials with reduced dimensions. Catalyst-free, PVD-grown Bi2Se3 nanoribbons are particularly promising for these applications due to the extraordinarily high mobility of their surface Dirac states, and low bulk carrier densities. However, these materials are prone to the formation of surface accumulation layers; therefore, the implementation of surface encapsulation layers and the choice of appropriate dielectrics for building gate-tunable devices are important. In this work, all-around ZnO-encapsulated nanoribbons are investigated. Gate-dependent magnetotransport measurements show improved charge transport characteristics as reduced nanoribbon/substrate interface carrier densities compared to the values obtained for the as-grown nanoribbons on SiO2 substrates.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] High-Mobility Ambipolar Magnetotransport in Topological Insulator Bi2Se3 Nanoribbons
    Kunakova, Gunta
    Bauch, Thilo
    Palermo, Xavier
    Salvato, Matteo
    Andzane, Jana
    Erts, Donats
    Lombardi, Floriana
    [J]. PHYSICAL REVIEW APPLIED, 2021, 16 (02):
  • [2] Controlled MOCVD growth of Bi2Se3 topological insulator nanoribbons
    Alegria, L. D.
    Petta, J. R.
    [J]. NANOTECHNOLOGY, 2012, 23 (43)
  • [3] Bulk-free topological insulator Bi2Se3 nanoribbons with magnetotransport signatures of Dirac surface states
    Kunakova, Gunta
    Galletti, Luca
    Charpentier, Sophie
    Andzane, Jana
    Erts, Donats
    Leonard, Francois
    Spataru, Catalin D.
    Bauch, Thilo
    Lombardi, Floriana
    [J]. NANOSCALE, 2018, 10 (41) : 19595 - 19602
  • [4] Nontrivial surface state transport in Bi2Se3 topological insulator nanoribbons
    Pan, Haiyang
    Zhang, Kang
    Wei, Zhongxia
    Wang, Jue
    Han, Min
    Song, Fengqi
    Wang, Xuefeng
    Wang, Baigeng
    Zhang, Rong
    [J]. APPLIED PHYSICS LETTERS, 2017, 110 (05)
  • [5] High pressure studies on topological insulator Bi2Se3
    Devidas, T. R.
    Mani, Awadhesh
    Bharathi, A.
    [J]. SOLID STATE PHYSICS, VOL 57, 2013, 1512 : 964 - 965
  • [6] Investigation of thermoelectric and magnetotransport properties of single crystalline Bi2Se3 topological insulator
    Singha, Pintu
    Das, Subarna
    Rana, Nabakumar
    Mukherjee, Suchandra
    Chatterjee, Souvik
    Bandyopadhyay, Sudipta
    Banerjee, Aritra
    [J]. JOURNAL OF APPLIED PHYSICS, 2024, 135 (02)
  • [7] Ultrathin Topological Insulator Bi2Se3 Nanoribbons Exfoliated by Atomic Force Microscopy
    Hong, Seung Sae
    Kundhikanjana, Worasom
    Cha, Judy J.
    Lai, Keji
    Kong, Desheng
    Meister, Stefan
    Kelly, Michael A.
    Shen, Zhi-Xun
    Cui, Yi
    [J]. NANO LETTERS, 2010, 10 (08) : 3118 - 3122
  • [8] Zeeman effect on surface electron transport in topological insulator Bi2Se3 nanoribbons
    Wang, Li-Xian
    Yan, Yuan
    Zhang, Liang
    Liao, Zhi-Min
    Wu, Han-Chun
    Ye, Da-Peng
    [J]. NANOSCALE, 2015, 7 (40) : 16687 - 16694
  • [9] Helical States of Topological Insulator Bi2Se3
    Zhao, Yonghong
    Hu, Yibin
    Liu, Lei
    Zhu, Yu
    Guo, Hong
    [J]. NANO LETTERS, 2011, 11 (05) : 2088 - 2091
  • [10] Bi2Se3 topological insulator quantum wires
    Nikolic, A.
    Barnes, C. H. W.
    [J]. JOURNAL OF PHYSICS COMMUNICATIONS, 2018, 2 (09):