Wiener Tauberian theorem for rank one symmetric spaces

被引:11
|
作者
Sarkar, RP [1 ]
机构
[1] Indian Stat Inst, Calcutta 700035, W Bengal, India
关键词
D O I
10.2140/pjm.1998.186.349
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we prove a Wiener Tauberian (W-T) theorem for L-p(G/K), p is an element of [1, 2), where G is one of the semisimple Lie groups of real rank one, SU(n,1),SO(n,1), Sp(n, 1) or the connected Lie group of real type F-4, and K is its maximal compact subgroup. W-T theorem for noncompact symmetric space has been proved so far for L-1(SL2(R)/SO2(R)) where the generator is necessarily K-finite ([S]). We generalize that result to the case of L-p functions of real rank one groups, without any K-finiteness restriction on the generator. We also obtain a reformulation of the W-T theorems using Hardy's theorem for semisimple Lie groups.
引用
收藏
页码:349 / 358
页数:10
相关论文
共 50 条