Hyperspectral Image Denoising Based on Superpixel Segmentation Low-Rank Matrix Approximation and Total Variation

被引:7
|
作者
Behroozi, Y. [1 ]
Yazdi, M. [1 ]
Asli, A. Zolghadr [1 ]
机构
[1] Shiraz Univ, Sch Elect & Comp Engn, Dept Commun & Elect Engn, Shiraz, Iran
关键词
Hyperspectral image (HSI); Denoising; Mixed noises; Superpixel segmentation (SS); Low-rank approximation (LR); Total variation (TV); LINEAR CANONICAL TRANSFORM; NOISE REMOVAL; RESTORATION; SPARSE; REPRESENTATION; MINIMIZATION; ALGORITHM; RECOVERY;
D O I
10.1007/s00034-021-01938-9
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we proposed a new method to remove mixed noises in hyperspectral images (HSI's) denoising using superpixel segmentation, low-rank matrix approximation and total variation (SSLRTV). According to the spectral correlation of the HSI bands, it has a low-rank structure in spectral-domain. So at first, we divide the HSI to the homogeneous regions by superpixel segmentation to save the spectral signature of pixels in the low-rank approximation method. Furthermore, each segmented region's rank is estimated to determine the principal spectral subspace. We improved algorithm performance by proposing a new TV model for HSIs that saves spatial and spectral smoothness of the HSI; furthermore, it has a fast convergence speed and simple computational based on the gradient descent method. In the proposed SSLRTV method, the optimization problem is solved by an augmented Lagrange multiplier method. Experiments on the real data and simulated data demonstrate that the proposed denoising method has better results than previous in terms of quality and run-time cost.
引用
收藏
页码:3372 / 3396
页数:25
相关论文
共 50 条
  • [1] Hyperspectral Image Denoising Based on Superpixel Segmentation Low-Rank Matrix Approximation and Total Variation
    Y. Behroozi
    M. Yazdi
    A. Zolghadr asli
    Circuits, Systems, and Signal Processing, 2022, 41 : 3372 - 3396
  • [2] HYPERSPECTRAL IMAGE DENOISING BASED ON LOW-RANK REPRESENTATION AND SUPERPIXEL SEGMENTATION
    Ma, Jiayi
    Li, Chang
    Ma, Yong
    Wang, Zhongyuan
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 3086 - 3090
  • [3] Hyperspectral image denoising with superpixel segmentation and low-rank representation
    Fan, Fan
    Ma, Yong
    Li, Chang
    Mei, Xiaoguang
    Huang, Jun
    Ma, Jiayi
    INFORMATION SCIENCES, 2017, 397 : 48 - 68
  • [4] Superpixel-Based Hyperspectral Image Denoising via Local-Global Low-Rank Approximation
    Fan, Ya-Ru
    Li, Daihui
    COMPUTATIONAL INTELLIGENCE, 2025, 41 (02)
  • [5] Total variation regularized low-rank tensor approximation for color image denoising
    Chen, Yongyong
    Zhou, Yicong
    2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 2523 - 2527
  • [6] Spectral Variation Alleviation by Low-Rank Matrix Approximation for Hyperspectral Image Analysis
    Mei, Shaohui
    Bi, Qianqian
    Ji, Jingyu
    Hou, Junhui
    Du, Qian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (06) : 796 - 800
  • [7] Denoising of Hyperspectral Image Using Low-Rank Matrix Factorization
    Xu, Fei
    Chen, Yongyong
    Peng, Chong
    Wang, Yongli
    Liu, Xuefeng
    He, Guoping
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (07) : 1141 - 1145
  • [8] Hyperspectral Image Denoising With Total Variation Regularization and Nonlocal Low-Rank Tensor Decomposition
    Zhang, Hongyan
    Liu, Lu
    He, Wei
    Zhang, Liangpei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3071 - 3084
  • [9] HYPERSPECTRAL IMAGE DENOISING WITH MULTISCALE LOW-RANK MATRIX RECOVERY
    Huang, Zhihong
    Li, Shutao
    Hu, Fang
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 5442 - 5445
  • [10] Hyperspectral image denoising via low-rank matrix recovery
    Song, Huihui
    Wang, Guojie
    Zhang, Kaihua
    REMOTE SENSING LETTERS, 2014, 5 (10) : 872 - 881