On some conjectures about the Chern numbers of filtrations

被引:18
|
作者
Mandal, Mousumi [1 ]
Singh, Balwant [1 ,2 ]
Verma, J. K. [1 ]
机构
[1] Indian Inst Technol, Dept Math, Bombay 400076, Maharashtra, India
[2] UM DAE Ctr Excellence Basic Sci, Bombay 400098, Maharashtra, India
关键词
Chern number; Hilbert polynomial; Cohen-Macaulay ring; Face ring; Filtration of ideals; HILBERT COEFFICIENTS;
D O I
10.1016/j.jalgebra.2010.10.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let I be an m-primary ideal of a Noetherian local ring (R, m) of positive dimension. The coefficient e(1)(A) of the Hilbert polynomial of an I-admissible filtration A is called the Chern number of A. The Positivity Conjecture of Vasconcelos for the Chern number of the integral closure filtration {(I-n) over bar} is proved for a 2-dimensional complete local domain and more generally for any analytically unramified local ring R whose integral closure in its total ring of fractions is Cohen-Macaulay as an R-module. It is proved that if I is a parameter ideal then the Chern number of the I-adic filtration is non-negative. Several other results on the Chern number of the integral closure filtration are established, especially in the case when R is not necessarily Cohen-Macaulay. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:147 / 162
页数:16
相关论文
共 50 条
  • [1] Some conjectures about random numbers
    Ginsburg, N
    Lesner, C
    PERCEPTUAL AND MOTOR SKILLS, 1999, 88 (01) : 337 - 341
  • [2] On two conjectures about practical numbers
    Melfi, G
    JOURNAL OF NUMBER THEORY, 1996, 56 (01) : 205 - 210
  • [3] RESULTS AND CONJECTURES ABOUT PRACTICAL NUMBERS
    MARGENSTERN, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1984, 299 (18): : 895 - 898
  • [4] Conjectures of Sun About Sums of Polygonal Numbers
    Bringmann K.
    Kane B.
    La Matematica, 2022, 1 (4): : 809 - 828
  • [5] SOME CONJECTURES ABOUT CYCLOTOMIC INTEGERS
    ROBINSON, RM
    MATHEMATICS OF COMPUTATION, 1965, 19 (90) : 210 - &
  • [6] Some results about Schiffer's conjectures
    Chatelain, T
    Henrot, A
    INVERSE PROBLEMS, 1999, 15 (03) : 647 - 658
  • [7] CHERN NUMBERS AND THE INDICES OF SOME ELLIPTIC DIFFERENTIAL OPERATORS
    Li, Ping
    PACIFIC JOURNAL OF MATHEMATICS, 2011, 251 (01) : 169 - 178
  • [8] Chern numbers of Chern submanifolds
    Feldman, KE
    QUARTERLY JOURNAL OF MATHEMATICS, 2002, 53 : 421 - 429
  • [9] Perverse filtrations, Chern filtrations, and refined BPS invariants for local P2
    Kononov, Yakov
    Pi, Weite
    Shen, Junliang
    ADVANCES IN MATHEMATICS, 2023, 433
  • [10] On some conjectures about optimal ternary cyclic codes
    Yan Liu
    Xiwang Cao
    Wei Lu
    Designs, Codes and Cryptography, 2020, 88 : 297 - 309