Trigonometrically-fitted multi-derivative linear methods for the resonant state of the Schrodinger equation

被引:1
|
作者
Zhang, Yanwei [1 ]
Fang, Yonglei [1 ]
You, Xiong [2 ]
Liu, Guangde [1 ]
机构
[1] Zaozhuang Univ, Sch Math & Stat, Zaozhuang 277160, Peoples R China
[2] Nanjing Agr Univ, Dept Appl Math, Nanjing 210095, Jiangsu, Peoples R China
关键词
Error analysis; Schrodinger equation; Obrechkoff method; NUMERICAL-SOLUTION; NYSTROM METHODS; PHASE-LAG;
D O I
10.1007/s10910-017-0851-8
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A family of trigonometrically-fitted multi-derivative linear methods for the numerical integration of the Schrodinger equation are constructed. Numerical results show the efficiency and robustness of the new methods when applied to the radial time-independent Schrodinger equation for large energies. Error analysis is carried out and the asymptotic expressions of the local errors for large energies explain the numerical results in the case of the resonance problem.
引用
收藏
页码:1250 / 1261
页数:12
相关论文
共 50 条