Restructuring Exponential Family Mixture Models

被引:0
|
作者
Dognin, Pierre L.
Hershey, John R.
Goel, Vaibhava
Olsen, Peder A.
机构
关键词
KL divergence; variational approximation; variational expectation-maximization; exponential family distributions; acoustic model clustering;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Variational KL (varKL) divergence minimization was previously applied to restructuring acoustic models (AMs) using Gaussian mixture models by reducing their size while preserving their accuracy. In this paper, we derive a related yarn, for exponential family mixture models (EMMs) and test its accuracy using the weighted local maximum likelihood agglomerative clustering technique. Minimizing varKL between a reference and a restructured AM led previously to the variational expectation maximization (varEM) algorithm; which we extend to EMMs. We present results on a clustering task using AMs trained on 50 hrs of Broadcast News (BN). EMMs are trained on fMMI-PLP features combined with frame level phone posterior probabilities given by the recently introduced sparse representation phone identification process. As we reduce model size, we test the word error rate using the standard BN test set and compare with baseline models of the same size, trained directly from data.
引用
收藏
页码:62 / 65
页数:4
相关论文
共 50 条
  • [1] Spatial mixture models based on exponential family conditional distributions
    Kaiser, MS
    Cressie, N
    Lee, J
    [J]. STATISTICA SINICA, 2002, 12 (02) : 449 - 474
  • [2] EXPONENTIAL FAMILY MIXTURE-MODELS (WITH LEAST-SQUARES ESTIMATORS)
    LINDSAY, BG
    [J]. ANNALS OF STATISTICS, 1986, 14 (01): : 124 - 137
  • [3] Mini-batch learning of exponential family finite mixture models
    Nguyen, Hien D.
    Forbes, Florence
    McLachlan, Geoffrey J.
    [J]. STATISTICS AND COMPUTING, 2020, 30 (04) : 731 - 748
  • [4] Mini-batch learning of exponential family finite mixture models
    Hien D. Nguyen
    Florence Forbes
    Geoffrey J. McLachlan
    [J]. Statistics and Computing, 2020, 30 : 731 - 748
  • [5] Mixture and reciprocity of exponential models
    Louati, Mahdi
    [J]. STATISTICS & PROBABILITY LETTERS, 2013, 83 (02) : 452 - 458
  • [6] MODELING EXPERTS' OPINIONS BY USING BAYESIAN MIXTURE MODELS FOR A SUBCLASS OF THE EXPONENTIAL FAMILY
    Rufo, M. J.
    Martin, J.
    Perez, C. J.
    [J]. PAKISTAN JOURNAL OF STATISTICS, 2009, 25 (04): : 595 - 613
  • [7] Local mixture models of exponential families
    Anaya-Izquierdo, Karim
    Marriott, Paul
    [J]. BERNOULLI, 2007, 13 (03) : 623 - 640
  • [8] Local score tests in mixture exponential family
    Wu, Y
    Gupta, AK
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 116 (02) : 421 - 435
  • [9] On-line Evolutionary Exponential Family Mixture
    Zhang, Jianwen
    Song, Yangqiu
    Chen, Gang
    Zhang, Changshui
    [J]. 21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS, 2009, : 1610 - 1615
  • [10] Component selection for exponential power mixture models
    Wang, Xinyi
    Feng, Zhenghui
    [J]. JOURNAL OF APPLIED STATISTICS, 2023, 50 (02) : 291 - 314