A convolutional neural network based super resolution technique of CT image utilizing both sinogram domain and image domain data

被引:1
|
作者
Yu, Minwoo [1 ]
Han, Minah [1 ]
Baek, Jongduk [1 ]
机构
[1] Yonsei Univ, Sch Integrated Technol, Seoul, South Korea
来源
基金
新加坡国家研究基金会;
关键词
super-resolution; sinogram upsampling network; modulated periodic activations; hybrid domain;
D O I
10.1117/12.2611972
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In previous deep learning based super-resolution techniques for CT images, only image domain data is used for training. However, image blurring can occur in image domain method which disrupts accurate diagnosis. In this work, we propose using both sinogram and image domain data to resolve the blurring issue. To predict upsampled sinogram more accurately, we use a convolutional neural network (CNN) as an encoder, which maps an input image to feature map for decoder. For decoder, we use dual multi-layer perceptron (MLP) structure. Our proposed dual-MLP structure consists of modulator and synthesizer MLP. Synthesizer MLP predicts the output pixel value by using coordinate-based information as an input, and modulator MLP helps synthesizer to estimate the output value accurately by using feature map information as an input. This network structure preserves high frequency components better than simple CNN structure. Through our proposed sinogram upsampling network (SUN) at sinogram domain, upsampled sinogram was generated, and image was reconstructed by filtered backprojection. The reconstructed image from upsampled sinogram preserves detailed textures compared to LR image. However, residual artifacts and blur still remain. Therefore, we train CNN using image domain data to reduce residual artifacts and blur. For the dataset, we acquire projection data from Mayo Clinic image using Siddon's algorithm in fan-beam CT geometry applying 4x1 detector binning. The binned sinogram is then used as an input for the SUN. The results show that our proposed hybrid domain method outperforms image domain and sinogram domain method with higher quantitative evaluation results.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A Frequency Domain Neural Network for Fast Image Super-resolution
    Li, Junxuan
    You, Shaodi
    Robles-Kelly, Antonio
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [2] Enhanced Image Super-Resolution Technique Using Convolutional Neural Network
    Chua, Kah Keong
    Tay, Yong Haur
    ADVANCES IN VISUAL INFORMATICS, 2013, 8237 : 157 - 164
  • [3] Single Image Super-Resolution Based on Convolutional Neural Network
    Shi Ziteng
    Wang Zhiren
    Wang Rui
    Ren Fuquan
    LASER & OPTOELECTRONICS PROGRESS, 2018, 55 (12)
  • [4] Application of Super-Resolution Convolutional Neural Network for Enhancing Image Resolution in Chest CT
    Umehara, Kensuke
    Ota, Junko
    Ishida, Takayuki
    JOURNAL OF DIGITAL IMAGING, 2018, 31 (04) : 441 - 450
  • [5] Application of Super-Resolution Convolutional Neural Network for Enhancing Image Resolution in Chest CT
    Kensuke Umehara
    Junko Ota
    Takayuki Ishida
    Journal of Digital Imaging, 2018, 31 : 441 - 450
  • [6] Image Fusion and Super-Resolution with Convolutional Neural Network
    Zhong, Jinying
    Yang, Bin
    Li, Yuehua
    Zhong, Fei
    Chen, Zhongze
    PATTERN RECOGNITION (CCPR 2016), PT II, 2016, 663 : 78 - 88
  • [7] Image Super-Resolution With Deep Convolutional Neural Network
    Ji, Xiancai
    Lu, Yao
    Guo, Li
    2016 IEEE FIRST INTERNATIONAL CONFERENCE ON DATA SCIENCE IN CYBERSPACE (DSC 2016), 2016, : 626 - 630
  • [8] Deep primitive convolutional neural network for image super resolution
    Greeshma, M. S. M.
    Bindu, V. R. V.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (1) : 253 - 278
  • [9] Deep primitive convolutional neural network for image super resolution
    Greeshma M. S.
    Bindu V. R.
    Multimedia Tools and Applications, 2024, 83 : 253 - 278
  • [10] Convolutional Neural Network for Smoke Image Super-Resolution
    Liu, Maoshen
    Gu, Ke
    Qiao, Junfei
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2018), 2018,