Exponentially fitted discontinuous Galerkin schemes for singularly perturbed problems

被引:2
|
作者
Lombardi, Ariel L. [1 ,2 ]
Pietra, Paola [3 ]
机构
[1] Univ Nacl Gen Sarmiento, Inst Ciencias, Los Polvorines, Buenos Aires, Argentina
[2] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
[3] CNR, Ist Matemat Applicata & Tecnol Informat, I-27100 Pavia, Italy
关键词
advection-diffusion equations; discontinuous Galerkin methods; exponentially fitted schemes; FINITE-ELEMENT METHODS; DIFFUSION; APPROXIMATIONS; DISCRETIZATION;
D O I
10.1002/num.20701
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
New discontinuous Galerkin schemes in mixed form are introduced for symmetric elliptic problems of second order. They exhibit reduced connectivity with respect to the standard ones. The modifications in the choice of the approximation spaces and in the stabilization term do not spoil the error estimates. These methods are then used for designing new exponentially fitted schemes for advection dominated equations. The presented numerical tests show the good performances of the proposed schemes. (c) 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2011
引用
收藏
页码:1747 / 1777
页数:31
相关论文
共 50 条