Contribution and Future of High-Throughput Transcriptomics in Battling Tuberculosis

被引:2
|
作者
Martinez-Perez, Amparo [1 ,2 ]
Estevez, Olivia [1 ,2 ]
Gonzalez-Fernandez, Africa [1 ,2 ]
机构
[1] Univ Vigo, Biomed Res Ctr CINBIO, Vigo, Spain
[2] Hosp Alvaro Cunqueiro, Galicia Hlth Res Inst IIS GS, Vigo, Spain
基金
欧盟地平线“2020”;
关键词
transcriptomics; tuberculosis; mycobacteria; RNA-sequencing; microarray; immune response; drug resistance; GENE-EXPRESSION PROFILES; HEMATOPOIETIC STEM-CELLS; MYCOBACTERIUM-TUBERCULOSIS; RNA-SEQ; PULMONARY TUBERCULOSIS; MICROARRAY ANALYSIS; HUMAN MACROPHAGES; STATIONARY-PHASE; HYPOXIC RESPONSE; INTERFERON-GAMMA;
D O I
10.3389/fmicb.2022.835620
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
While Tuberculosis (TB) infection remains a serious challenge worldwide, big data and "omic" approaches have greatly contributed to the understanding of the disease. Transcriptomics have been used to tackle a wide variety of queries including diagnosis, treatment evolution, latency and reactivation, novel target discovery, vaccine response or biomarkers of protection. Although a powerful tool, the elevated cost and difficulties in data interpretation may hinder transcriptomics complete potential. Technology evolution and collaborative efforts among multidisciplinary groups might be key in its exploitation. Here, we discuss the main fields explored in TB using transcriptomics, and identify the challenges that need to be addressed for a real implementation in TB diagnosis, prevention and therapy.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] High-throughput transcriptomics
    Nunzio D’Agostino
    Wenli Li
    Dapeng Wang
    [J]. Scientific Reports, 12
  • [2] High-throughput transcriptomics
    D'Agostino, Nunzio
    Li, Wenli
    Wang, Dapeng
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [3] High-throughput screening with transcriptomics
    Lei Tang
    [J]. Nature Methods, 2020, 17 : 251 - 251
  • [4] High-throughput screening with transcriptomics
    Singh, Arunima
    [J]. NATURE METHODS, 2020, 17 (03) : 251 - 251
  • [5] Data Integration and Reproducibility for High-Throughput Transcriptomics
    Mooney, Michael
    McWeeney, Shannon
    [J]. BRAIN TRANSCRIPTOME, 2014, 116 : 55 - 71
  • [6] The future of high-throughput screening
    Mayr, Lorenz M.
    Fuerst, Peter
    [J]. JOURNAL OF BIOMOLECULAR SCREENING, 2008, 13 (06) : 443 - 448
  • [7] Shape analysis of high-throughput transcriptomics experiment data
    Okrah, Kwame
    Bravo, Hector Corrada
    [J]. BIOSTATISTICS, 2015, 16 (04) : 627 - 640
  • [8] High-Throughput Transcriptomics Platform for Screening Environmental Chemicals
    Harrill, Joshua A.
    Everett, Logan J.
    Haggard, Derik E.
    Sheffield, Thomas
    Bundy, Joseph L.
    Willis, Clinton M.
    Thomas, Russell S.
    Shah, Imran
    Judson, Richard S.
    [J]. TOXICOLOGICAL SCIENCES, 2021, 181 (01) : 68 - 89
  • [9] High-throughput mechanical phenotyping and transcriptomics of single cells
    Shiomi, Akifumi
    Kaneko, Taikopaul
    Nishikawa, Kaori
    Tsuchida, Arata
    Isoshima, Takashi
    Sato, Mayuko
    Toyooka, Kiminori
    Doi, Kentaro
    Nishikii, Hidekazu
    Shintaku, Hirofumi
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [10] High-throughput single-cell transcriptomics on organoids
    Brazovskaja, Agnieska
    Treutlein, Barbara
    Camp, J. Gray
    [J]. CURRENT OPINION IN BIOTECHNOLOGY, 2019, 55 : 167 - 171