Quantum simulation of antiferromagnetic spin chains in an optical lattice

被引:714
|
作者
Simon, Jonathan [1 ]
Bakr, Waseem S. [1 ]
Ma, Ruichao [1 ]
Tai, M. Eric [1 ]
Preiss, Philipp M. [1 ]
Greiner, Markus [1 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
关键词
ATOMIC MOTT INSULATOR; ULTRACOLD ATOMS; TRAPPED IONS; GAS; TRANSITION; SUPERFLUID; CRITICALITY; SYMMETRY; PHYSICS; STATE;
D O I
10.1038/nature09994
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Understanding exotic forms of magnetism in quantum mechanical systems is a central goal of modern condensed matter physics, with implications for systems ranging from high-temperature superconductors to spintronic devices. Simulating magnetic materials in the vicinity of a quantum phase transition is computationally intractable on classical computers, owing to the extreme complexity arising from quantum entanglement between the constituent magnetic spins. Here we use a degenerate Bose gas of rubidium atoms confined in an optical lattice to simulate a chain of interacting quantum Ising spins as they undergo a phase transition. Strong spin interactions are achieved through a site-occupation to pseudo-spin mapping. As we vary a magnetic field, quantum fluctuations drive a phase transition from a paramagnetic phase into an antiferromagnetic phase. In the paramagnetic phase, the interaction between the spins is overwhelmed by the applied field, which aligns the spins. In the antiferromagnetic phase, the interaction dominates and produces staggered magnetic ordering. Magnetic domain formation is observed through both in situ site-resolved imaging and noise correlation measurements. By demonstrating a route to quantum magnetism in an optical lattice, this work should facilitate further investigations of magnetic models using ultracold atoms, thereby improving our understanding of real magnetic materials.
引用
收藏
页码:307 / U200
页数:7
相关论文
共 50 条
  • [1] Quantum simulation of antiferromagnetic spin chains in an optical lattice
    Jonathan Simon
    Waseem S. Bakr
    Ruichao Ma
    M. Eric Tai
    Philipp M. Preiss
    Markus Greiner
    [J]. Nature, 2011, 472 : 307 - 312
  • [2] RANDOM ANTIFERROMAGNETIC QUANTUM SPIN CHAINS
    FISHER, DS
    [J]. PHYSICAL REVIEW B, 1994, 50 (06): : 3799 - 3821
  • [3] Weakly coupled antiferromagnetic quantum spin chains
    Wang, ZQ
    [J]. PHYSICAL REVIEW LETTERS, 1997, 78 (01) : 126 - 129
  • [4] Metamagnetism of antiferromagnetic XXZ quantum spin chains
    Sakai, T
    Takahashi, M
    [J]. PHYSICAL REVIEW B, 1999, 60 (10): : 7295 - 7298
  • [5] EDGE STATES IN ANTIFERROMAGNETIC QUANTUM SPIN CHAINS
    NG, TK
    [J]. PHYSICAL REVIEW B, 1994, 50 (01): : 555 - 558
  • [6] The lattice β-function of quantum spin chains
    Crompton, P. R.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2006,
  • [7] Effects of randomness in gapped antiferromagnetic quantum spin chains
    Yang, K
    Hyman, RA
    Bhatt, RN
    Girvin, SM
    [J]. JOURNAL OF APPLIED PHYSICS, 1996, 79 (08) : 5096 - 5098
  • [8] Quantum solitons and the Haldane phase in antiferromagnetic spin chains
    Mikeska, HJ
    [J]. CHAOS SOLITONS & FRACTALS, 1995, 5 (12) : 2585 - 2603
  • [9] Edge states in open antiferromagnetic quantum spin chains
    Ng, TK
    Qin, SJ
    Su, ZB
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1996, 29 : S102 - S106
  • [10] High-field spin dynamics of antiferromagnetic quantum spin chains
    Enderle, M
    Regnault, LP
    Broholm, C
    Reich, D
    Zaliznyak, I
    Sieling, M
    Ronnow, H
    McMorrow, D
    [J]. PHYSICA B, 2000, 276 : 560 - 561