Parametric estimation of a bivariate stable Levy process

被引:12
|
作者
Esmaeili, Habib [1 ]
Klueppelberg, Claudia [1 ,2 ]
机构
[1] Tech Univ Munich, Ctr Math Sci, D-85748 Garching, Germany
[2] Tech Univ Munich, Inst Adv Study, D-85748 Garching, Germany
关键词
Levy copula; Maximum likelihood estimation; Dependence structure; Fisher information matrix; Multivariate stable process; Parameter estimation; GAMMA;
D O I
10.1016/j.jmva.2011.01.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a parametric model for a bivariate stable Levy process based on a Levy copula as a dependence model. We estimate the parameters of the full bivariate model by maximum likelihood estimation. As an observation scheme we assume that we observe all jumps larger than some epsilon > 0 and base our statistical analysis on the resulting compound Poisson process. We derive the Fisher information matrix and prove asymptotic normality of all estimates when the truncation point epsilon -> 0. A simulation study investigates the loss of efficiency because of the truncation. (c) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:918 / 930
页数:13
相关论文
共 50 条