Jones formalism for image fusion

被引:5
|
作者
Khaustov, Ye D. [1 ]
Khaustov, Ye Ya. [1 ]
Ryzhov, Ye [1 ]
Lychkowskyy, E. [2 ]
Vlokh, R. [3 ]
Nastishin, Yu A. [1 ]
机构
[1] Hetman Petro Sahaidachnyi Natl Army Acad, 32 Heroes Maidan St, UA-79012 Lvov, Ukraine
[2] Lviv Danylo Halytsky Natl Med Univ, 69 Pekarska St, UA-79010 Lvov, Ukraine
[3] OG Vlokh Inst Phys Opt, 23 Dragomanov St, UA-79005 Lvov, Ukraine
关键词
image fusion; Jones matrices; complex Jones vectors; visible and infrared images; FRAMEWORK;
D O I
10.3116/16091833/22/3/165/2021
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We suggest a novel approach for the fusion of visible (u) and infrared (upsilon) images, basing on analogy between the mathematical forms of a Jones vector of elliptically polarized light wave and a complex 2D vector (psi) over right arrow (0) composed of the images u and upsilon. Since there is no restriction on which of the two images should be chosen as a real (or imaginary) component, one can construct (psi) over right arrow (0) in the two forms, (psi) over right arrow (0)(neg) = (1/root 2) [u, i upsilon](Tr) or (psi) over right arrow pos(0) = (1/root 2) [upsilon, iu](Tr), where the superscript "Tr" denotes the operation of transposing, i.e. (psi) over right arrow (0) represents a column vector. Following the analogy with the Jones vector of light wave, the vector (psi) over right arrow (0)(pos,neg) can be transformed as (psi) over right arrow = J (psi) over right arrow (0)(neg,pas), with J being a complex 2 x 2-matrix, an analogue of the Jones matrix for optically anisotropic medium. The above analogy with the Jones formalism allows one to synthesize the fused images using three types of the fusion algorithms, 'amplitude', 'azimuth' and 'ellipticity' ones. Varying the components of the J matrix with time, one can synthesize the fused image in a dynamic mode, thus animating the images fused under smoothly varying parameters, which are combinations of the J matrix components.
引用
收藏
页码:165 / 180
页数:16
相关论文
共 50 条
  • [1] HARRIS AND JONES IMAGE-POTENTIAL FORMALISM FOR A QUANTUM PARTICLE - APPLICATION TO SURFACE STATES
    HODGES, CH
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1975, 8 (12): : 1849 - 1861
  • [2] Jones matrix formalism for quasioptical EPR
    Budil, DE
    Ding, ZB
    Smith, GR
    Earle, KA
    JOURNAL OF MAGNETIC RESONANCE, 2000, 144 (01) : 20 - 34
  • [3] Transformation matrices for the Mueller-Jones formalism
    Espinosa-Luna, Rafael
    Rodriguez-Carrera, David
    Bernabeu, Eusebio
    Hinojosa-Ruiz, Sinhue
    OPTIK, 2008, 119 (16): : 757 - 765
  • [4] Optical vortex generation and Jones vector formalism
    A. V. Volyar
    T. A. Fadeeva
    V. G. Shvedov
    Optics and Spectroscopy, 2002, 93 : 267 - 272
  • [5] Optical vortex generation and Jones vector formalism
    Volyar, AV
    Fadeeva, TA
    Shvedov, VG
    OPTICS AND SPECTROSCOPY, 2002, 93 (02) : 267 - 272
  • [6] Optic axis determination in SU(2) Jones formalism
    Yamanari, Masahiro
    Horikoshi, Kenji
    Aoki, Nobuyori
    Suzuki, Daisuke
    Totani, Kota
    Hori, Tomoki
    Oshima, Susumu
    Jaillon, Franck
    Sugiyama, Satoshi
    OPTICAL COHERENCE TOMOGRAPHY AND COHERENCE DOMAIN OPTICAL METHODS IN BIOMEDICINE XXIII, 2019, 10867
  • [7] Jones-matrix formalism as a representation of the Lorentz group
    Han, D
    Kim, YS
    Noz, ME
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1997, 14 (09): : 2290 - 2298
  • [8] Space-time reflection symmetry in the Jones formalism in optics
    Bisson, Jean-Francois
    PHYSICAL REVIEW A, 2023, 108 (03)
  • [9] LASER EIGENSTATES IN THE FRAMEWORK OF A SPATIALLY GENERALIZED JONES MATRIX FORMALISM
    BRETENAKER, F
    LEFLOCH, A
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1991, 8 (02) : 230 - 238
  • [10] Extension of the Jones matrix formalism to higher-order transverse modes
    Voss, Andreas
    Ahmed, Marwan Abdou
    Graf, Thomas
    OPTICS LETTERS, 2007, 32 (01) : 83 - 85