Spread out random walks on homogeneous spaces

被引:2
|
作者
Prohaska, Roland [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
关键词
Random walk; homogeneous space; Markov chain; Harris recurrence; STATIONARY MEASURES; INVARIANT SUBSETS; LIMIT-THEOREMS; MARKOV-CHAINS; ERGODICITY;
D O I
10.1017/etds.2020.98
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A measure on a locally compact group is said to be spread out if one of its convolution powers is not singular with respect to Haar measure. Using Markov chain theory, we conduct a detailed analysis of random walks on homogeneous spaces with spread out increment distribution. For finite volume spaces, we arrive at a complete picture of the asymptotics of the n-step distributions: they equidistribute towards Haar measure, often exponentially fast and locally uniformly in the starting position. In addition, many classical limit theorems are shown to hold. In the infinite volume case, we prove recurrence and a ratio limit theorem for symmetric spread out random walks on homogeneous spaces of at most quadratic growth. This settles one direction in a long-standing conjecture.
引用
收藏
页码:3439 / 3473
页数:35
相关论文
共 50 条
  • [1] On random walks and switched random walks on homogeneous spaces
    Moreno, Elvira
    Velasco, Mauricio
    COMBINATORICS PROBABILITY AND COMPUTING, 2023, 32 (03) : 398 - 421
  • [2] RANDOM-WALKS ON HOMOGENEOUS SPACES
    SCHOTT, R
    LECTURE NOTES IN MATHEMATICS, 1984, 1064 : 564 - 575
  • [3] Introduction to random walks on homogeneous spaces
    Yves Benoist
    Jean-François Quint
    Japanese Journal of Mathematics, 2012, 7 : 135 - 166
  • [4] Introduction to random walks on homogeneous spaces
    Benoist, Yves
    Quint, Jean-Francois
    JAPANESE JOURNAL OF MATHEMATICS, 2012, 7 (02): : 135 - 166
  • [5] RECURRENT RANDOM-WALKS ON HOMOGENEOUS SPACES
    SCHOTT, R
    LECTURE NOTES IN MATHEMATICS, 1986, 1210 : 146 - 152
  • [6] Random walks on finite volume homogeneous spaces
    Benoist, Yves
    Quint, Jean-Francois
    INVENTIONES MATHEMATICAE, 2012, 187 (01) : 37 - 59
  • [7] Random walks on finite volume homogeneous spaces
    Yves Benoist
    Jean-Francois Quint
    Inventiones mathematicae, 2012, 187 : 37 - 59
  • [8] Expanding measures: Random walks and rigidity on homogeneous spaces
    Prohaska, Roland
    Sert, Cagri
    Shi, Ronggang
    FORUM OF MATHEMATICS SIGMA, 2023, 11
  • [9] DICHOTOMIC THEOREM FOR RANDOM-WALKS ON HOMOGENEOUS SPACES
    HENNION, H
    ROYNETTE, B
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 285 (05): : 399 - 401
  • [10] EXTREME VALUE THEORY FOR RANDOM WALKS ON HOMOGENEOUS SPACES
    Kirsebom, Maxim Solund
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (11) : 4689 - 4717