Communication-Avoiding Optimization Methods for Distributed Massive-Scale Sparse Inverse Covariance Estimation

被引:0
|
作者
Koanantakool, Penporn [1 ,2 ]
Ali, Alnur [3 ]
Azad, Ariful [2 ]
Buluc, Aydn [1 ,2 ]
Morozov, Dmitriy [2 ,5 ]
Oliker, Leonid [2 ]
Yelick, Katherine [1 ,2 ]
Oh, Sang-Yun [2 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[3] Carnegie Mellon Univ, Machine Learning Dept, Pittsburgh, PA 15213 USA
[4] UC Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA USA
[5] Univ Calif Berkeley, Berkeley Inst Data Sci, Berkeley, CA USA
关键词
VARIABLE SELECTION; MODEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Across a variety of scientific disciplines, sparse inverse covariance estimation is a popular tool for capturing the underlying dependency relationships in multivariate data. Unfortunately, most estimators are not scalable enough to handle the sizes of modern high-dimensional data sets (often on the order of terabytes), and assume Gaussian samples. To address these deficiencies, we introduce HP-CONCORD, a highly scalable optimization method for estimating a sparse inverse covariance matrix based on a regularized pseudolikelihood framework, without assuming Gaussianity. Our parallel proximal gradient method uses a novel communication-avoiding linear algebra algorithm and runs across a multi-node cluster with up to 1k nodes (24k cores), achieving parallel scalability on problems with up to approximate to 819 billion parameters (1.28 million dimensions); even on a single node, HP-CONCORD demonstrates scalability, outperforming a state-of-the-art method. We also use HP-CONCORD to estimate the underlying dependency structure of the brain from fMRI data, and use the result to identify functional regions automatically. The results show good agreement with a clustering from the neuroscience literature.
引用
收藏
页数:11
相关论文
共 7 条
  • [1] LARGE-SCALE SPARSE INVERSE COVARIANCE MATRIX ESTIMATION
    Bollhoefer, Matthias
    Eftekhari, Aryan
    Scheidegger, Simon
    Schenk, Olaf
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (01): : A380 - A401
  • [2] Communication-Avoiding and Memory-Constrained Sparse Matrix-Matrix Multiplication at Extreme Scale
    Hussain, Md Taufique
    Selvitopi, Oguz
    Buluc, Aydin
    Azad, Ariful
    2021 IEEE 35TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS), 2021, : 90 - 100
  • [3] LARGE-SCALE l0 SPARSE INVERSE COVARIANCE ESTIMATION
    Marjanovic, Goran
    Ulfarsson, Magnus
    Solo, Victor
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 4767 - 4771
  • [4] A MULTILEVEL FRAMEWORK FOR SPARSE OPTIMIZATION WITH APPLICATION TO INVERSE COVARIANCE ESTIMATION AND LOGISTIC REGRESSION
    Treister, Eran
    Turek, Javier S.
    Yavneh, Irad
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05): : S566 - S592
  • [5] Distributed Memory Sparse Inverse Covariance Matrix Estimation on High-Performance Computing Architectures
    Eftekhari, Aryan
    Bollhoefer, Matthias
    Schenk, Olaf
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE, AND ANALYSIS (SC'18), 2018,
  • [6] A Block-Coordinate Descent Approach for Large-scale Sparse Inverse Covariance Estimation
    Treister, Eran
    Turek, Javier
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [7] Large-Scale Sparse Inverse Covariance Estimation via Thresholding and Max-Det Matrix Completion
    Zhang, Richard Y.
    Fattahi, Salar
    Sojoudi, Somayeh
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80