Sequential control variates for functionals of Markov processes

被引:18
|
作者
Gobet, E [1 ]
Maire, S
机构
[1] Ecole Polytech, Ctr Math Appl, F-91128 Palaiseau, France
[2] Univ Toulon & Var, ISITV, F-83262 La Valette Du Var, France
关键词
sequential Monte Carlo; Feynman-Kac formula; variance reduction;
D O I
10.1137/040609124
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using a sequential control variates algorithm, we compute Monte Carlo approximations of solutions of linear partial differentia equations connected to linear Markov processes by the Feynman-Kac formula. It includes diffusio processes with or without absorbing/reflectin boundary and jump processes. We prove that the bias and the variance decrease geometrically with the number of steps of our algorithm. Numerical examples show the efficienc of the method on elliptic and parabolic problems.
引用
收藏
页码:1256 / 1275
页数:20
相关论文
共 50 条