Decomposition based multi-objective evolutionary algorithm for windfarm layout optimization

被引:46
|
作者
Biswas, Partha P. [1 ]
Suganthan, P. N. [1 ]
Amaratunga, Gehan A. J. [2 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
[2] Univ Cambridge, Dept Engn, Cambridge, England
基金
新加坡国家研究基金会;
关键词
Wind turbine data; Windfarm turbine placement; Power output; Efficiency; Multi-objective evolutionary algorithm; Hub heights; FARM LAYOUT; GENETIC ALGORITHM; OPTIMAL PLACEMENT; TURBINES;
D O I
10.1016/j.renene.2017.08.041
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
An efficient windfarm layout to harness maximum power out of the wind is highly desirable from technical and commercial perspectives. A bit of flexibility on layout gives leeway to the designer of windfarm in planning facilities for erection, installation and future maintenance. This paper proposes an approach where several options of optimized usable windfarm layouts can be obtained in a single run of decomposition based multi-objective evolutionary algorithm (MOEA/D). A set of Pareto optimal vectors is obtained with objective as maximum output power at minimum wake loss i.e. at maximum efficiency. Maximization of both output power and windfarm efficiency are set as two objectives for optimization. The objectives thus formulated ensure that in any single Pareto optimal solution the number of turbines used are placed at most optimum locations in the windfarm to extract maximum power available in the wind. Case studies with actual manufacturer data for wind turbines of same as well as different hub heights and with realistic wind data are performed under the scope of this research study. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:326 / 337
页数:12
相关论文
共 50 条
  • [1] A Multi-objective Evolutionary Algorithm based on Decomposition for Constrained Multi-objective Optimization
    Martinez, Saul Zapotecas
    Coello, Carlos A. Coello
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 429 - 436
  • [2] A Decomposition Based Evolutionary Algorithm with Uniform Design for Multi-objective Optimization
    Dai, Cai
    Lei, Xiujuan
    Ding, Yulian
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 2484 - 2489
  • [3] A New Evolutionary Algorithm Based on Decomposition for Multi-objective Optimization Problems
    Dai, Cai
    Lei, Xiujuan
    PROCEEDINGS OF 2016 12TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2016, : 33 - 38
  • [4] A new orthogonal evolutionary algorithm based on decomposition for multi-objective optimization
    Dai, Cai
    Wang, Yuping
    Yue, Wei
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2015, 66 (10) : 1686 - 1698
  • [5] A Decomposition-Based Evolutionary Algorithm for Multi-modal Multi-objective Optimization
    Tanabe, Ryoji
    Ishibuchi, Hisao
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XV, PT I, 2018, 11101 : 249 - 261
  • [6] Adaptive Windows Layout based on Evolutionary Multi-Objective Optimization
    Chen, Rui
    Xie, Tiantian
    Lin, Tao
    Chen, Yu
    INTERNATIONAL JOURNAL OF TECHNOLOGY AND HUMAN INTERACTION, 2013, 9 (03) : 63 - 72
  • [7] A localized decomposition evolutionary algorithm for imbalanced multi-objective optimization
    Ye, Yulong
    Lin, Qiuzhen
    Wong, Ka-Chun
    Li, Jianqiang
    Ming, Zhong
    Coello, Carlos A. Coello
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 129
  • [8] A CUDA Implementation of an Improved Decomposition Based Evolutionary Algorithm for Multi-Objective Optimization
    Asafuddoula, Md
    Singh, Hemant Kumar
    Ray, Tapabrata
    PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'16 COMPANION), 2016, : 71 - 72
  • [9] Quantum-inspired multi-objective optimization evolutionary algorithm based on decomposition
    Wang, Yang
    Li, Yangyang
    Jiao, Licheng
    SOFT COMPUTING, 2016, 20 (08) : 3257 - 3272
  • [10] Quantum-inspired multi-objective optimization evolutionary algorithm based on decomposition
    Yang Wang
    Yangyang Li
    Licheng Jiao
    Soft Computing, 2016, 20 : 3257 - 3272