Multi-branch angle aware spatial temporal graph convolutional neural network for model-based gait recognition

被引:3
|
作者
Zheng, Liyang [1 ]
Zha, Yuheng [1 ]
Kong, Da [1 ]
Yang, Hanqing [1 ]
Zhang, Yu [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Control Sci & Engn, Hangzhou, Peoples R China
[2] Zhejiang Univ, Coll Control Sci & Engn, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; machine intelligence; vision;
D O I
10.1049/csy2.12052
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Model-based gait recognition with skeleton data input has attracted more attention in recent years. The model-based gait recognition methods take skeletons constructed by body joints as input, which are invariant to changing carrying and clothing conditions. However, previous methods limitedly model the skeleton information in either spatial or temporal domains and ignore the pose variety under different view angles, which results in poor performance for gait recognition. To solve the above problems, we propose the Multi-Branch Angle Aware Spatial Temporal Graph Convolutional Neural Network to better depict the spatial-temporal relationship while minimising the interference from the view angles. The model adopts the legacy Spatial Temporal Graph Neural Network (ST-GCN) as its backbone and relocates it to create independent ST-GCN branches. The novel Angle Estimator module is designed to predict the skeletons' view angles, which enables the network robust to the changing views. To balance the weights of different body parts and sequence frames, we build a Part-Frame-Importance module to redistribute them. Our experiments on the challenging CASIA-B dataset have proved the efficacy of the proposed method, which achieves state-of-the-art performance under different carrying and clothing conditions.
引用
收藏
页码:97 / 106
页数:10
相关论文
共 50 条
  • [1] STJA-GCN: A Multi-Branch Spatial-Temporal Joint Attention Graph Convolutional Network for Abnormal Gait Recognition
    Yin, Ziming
    Jiang, Yi
    Zheng, Jianli
    Yu, Hongliu
    APPLIED SCIENCES-BASEL, 2023, 13 (07):
  • [2] Multiclass classification of motor imagery tasks based on multi-branch convolutional neural network and temporal convolutional network model
    Yu, Shiqi
    Wang, Zedong
    Wang, Fei
    Chen, Kai
    Yao, Dezhong
    Xu, Peng
    Zhang, Yong
    Wang, Hesong
    Zhang, Tao
    CEREBRAL CORTEX, 2024, 34 (02)
  • [3] Multi-Branch Spatial-Temporal Network for Action Recognition
    Wang, Yingying
    Li, Wei
    Tao, Ran
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (10) : 1556 - 1560
  • [4] Multi-Branch Spatial-Temporal Attention Graph Convolution Network for Skeleton-based Action Recognition
    Wang, Daoshuai
    Li, Dewei
    Guan, Yaonan
    Wang, Gang
    Shao, Haibin
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 6487 - 6492
  • [5] Gait Recognition Algorithm based on Spatial-temporal Graph Neural Network
    Zhou, Jian
    Yan, Shi
    Zhang, Jie
    2022 INTERNATIONAL CONFERENCE ON BIG DATA, INFORMATION AND COMPUTER NETWORK (BDICN 2022), 2022, : 63 - 67
  • [6] Gait Recognition Algorithm based on Spatial-temporal Graph Neural Network
    Lan, TianYi
    Shi, ZongBin
    Wang, KeJun
    Yin, ChaoQun
    2022 INTERNATIONAL CONFERENCE ON BIG DATA, INFORMATION AND COMPUTER NETWORK (BDICN 2022), 2022, : 55 - 58
  • [7] Gait Recognition Algorithm based on Spatial-temporal Graph Neural Network
    Shi, Huan
    Hui, Bo
    Hu, Biao
    Gu, RongJie
    2022 INTERNATIONAL CONFERENCE ON BIG DATA, INFORMATION AND COMPUTER NETWORK (BDICN 2022), 2022, : 59 - 62
  • [8] Facial Expression Recognition Using Multi-Branch Attention Convolutional Neural Network
    He, Yinggang
    IEEE ACCESS, 2023, 11 : 1244 - 1253
  • [9] A multi-branch convolutional neural network for snoring detection based on audio
    Dong, Hao
    Wu, Haitao
    Yang, Guan
    Zhang, Junming
    Wan, Keqin
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2024,
  • [10] Multi-Branch Convolutional Network for Context-Aware Recommendation
    Guo, Wei
    Zhang, Can
    Guo, Huifeng
    Tang, Ruiming
    He, Xiuqiang
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 1709 - 1712