Biochemical conversion of sweet sorghum bagasse to succinic acid

被引:31
|
作者
Lo, Enlin [1 ]
Brabo-Catala, Luiza [2 ]
Dogaris, Ioannis [2 ]
Ammar, Ehab M. [2 ,3 ]
Philippidis, George P. [2 ]
机构
[1] Univ S Florida, Dept Chem & Biomed Engn, 4202 E Fowler Ave, Tampa, FL 33620 USA
[2] Univ S Florida, Patel Coll Global Sustainabil, 4202 E Fowler Ave, Tampa, FL 33620 USA
[3] Univ Sadat City, Genet Engn & Biotechnol Res Inst, El Sadat City, Egypt
关键词
Succinic acid; Sweet sorghum bagasse; Acid pretreatment; Phosphoric acid; Biochemical conversion; DILUTE PHOSPHORIC-ACID; ENZYMATIC-HYDROLYSIS; ACTINOBACILLUS-SUCCINOGENES; LIGNOCELLULOSIC MATERIALS; EFFICIENT PRODUCTION; ETHANOL-PRODUCTION; PRETREATMENT; FERMENTATION; FEEDSTOCK; TECHNOLOGIES;
D O I
10.1016/j.jbiosc.2019.07.003
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Succinic acid, an important intermediate in the manufacture of plastics and other commodity and specialty chemicals, is currently made primarily from petroleum. We attempted to biosynthesize succinic acid through microbial fermentation of cellulosic sugars derived from the bagasse of sweet sorghum, a renewable feedstock that can grow in a wide range of climates around the world. We investigated pretreating sweet sorghum bagasse (SSB) with concentrated phosphoric acid at mild conditions (40-85 degrees C) at various residence times and biomass concentrations. We then subjected the pretreated SSB to enzymatic hydrolysis with a commercial cellulase to release glucose. The highest glucose yield was obtained when SSB was pretreated at 50 degrees C for 43 min at 130 g/L biomass concentration on dry basis. Fermentation was carried out with Actinobacillus succinogenes 130Z, which readily converted 29.2 g/L of cellulosic glucose to 17.8 g/L of succinic acid in a 3.5-L bioreactor sparged with CO2 at a rate of 0.5 vvm, thus reducing the carbon footprint of the process. Overall, we demonstrated, for the first time, the use of SSB for production of succinic acid using practices that lower energy use, future equipment cost, waste generation, and carbon footprint. (C) 2019, The Society for Biotechnology, Japan. All rights reserved.
引用
收藏
页码:104 / 109
页数:6
相关论文
共 50 条
  • [1] Conversion of Sweet Sorghum Bagasse Residue to Glucose by Dilute Acid Hydrolysis
    Zhang, B. -Z.
    Zhang, S. -P.
    Zhao, S. -T.
    Xu, Q. -L.
    Yan, Y. -J.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2015, 37 (15) : 1688 - 1696
  • [2] Conversion of Sweet Sorghum Bagasse into Value-Added Biochar
    Lima, Isabel
    Bigner, Renee
    Wright, Maureen
    SUGAR TECH, 2017, 19 (05) : 553 - 561
  • [3] Conversion of Sweet Sorghum Bagasse into Value-Added Biochar
    Isabel Lima
    Renee Bigner
    Maureen Wright
    Sugar Tech, 2017, 19 : 553 - 561
  • [4] Fast pyrolysis of sweet sorghum and sweet sorghum bagasse
    Piskorz, J
    Majerski, P
    Radlein, D
    Scott, DS
    Bridgwater, AV
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 1998, 46 (01) : 15 - 29
  • [5] SACCHARIFICATION OF SWEET SORGHUM BAGASSE BY CELLULASE
    FURUSAKI, S
    ASAI, N
    HOSHIKAWA, K
    JOURNAL OF FERMENTATION TECHNOLOGY, 1985, 63 (06): : 523 - 528
  • [6] Stability and Use of Sweet Sorghum Bagasse
    Maureen Wright
    Isabel Lima
    Renee Bigner
    Sugar Tech, 2017, 19 : 451 - 457
  • [7] Stability and Use of Sweet Sorghum Bagasse
    Wright, Maureen
    Lima, Isabel
    Bigner, Renee
    SUGAR TECH, 2017, 19 (05) : 451 - 457
  • [8] Low severity dilute-acid hydrolysis of sweet sorghum bagasse
    Banerji, Aditi
    Balakrishnan, M.
    Kishore, V. V. N.
    APPLIED ENERGY, 2013, 104 : 197 - 206
  • [9] Propionic acid production byPropionibacterium freudenreichiiusing sweet sorghum bagasse hydrolysate
    Ammar, Ehab M.
    Martin, Jessica
    Brabo-Catala, Luiza
    Philippidis, George P.
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2020, 104 (22) : 9619 - 9629
  • [10] Catalytic pyrolysis of sweet sorghum bagasse in the presence of two acid catalysts
    Carvalho, W. S.
    Santana Junior, J. A.
    Ataide, C. H.
    JOURNAL OF THE ENERGY INSTITUTE, 2020, 93 (01) : 185 - 197