A PDF micromixing model of dispersion for atmospheric flow. Part II: application to convective boundary layer

被引:33
|
作者
Cassiani, M
Franzese, P
Giostra, U
机构
[1] Univ Urbino, Fac Sci Ambientali, I-61029 Urbino, Italy
[2] George Mason Univ, Sch Computat Sci, Fairfax, VA 22030 USA
关键词
concentration fluctuations; micromixing modelling; Monte Carlo simulation; turbulent dispersion; chemical reactions;
D O I
10.1016/j.atmosenv.2004.11.019
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Lagrangian stochastic probability density function (PDF) model developed by Cassiani et al. [Atmos. Environ. (2005) Part 1] is extended to the atmospheric convective boundary layer. The model is applied to simulate concentration statistics and PDF generated by passive releases from point and line sources in the convective boundary layer. A dynamical time-expandable grid is implemented, which optimises the computational resources required for dispersion simulations in atmospheric flow. A parameterised formulation for the micromixing time scale in convective conditions is derived. Model concentration statistics including mean field, fluctuations and concentration PDF are tested with four water tank experiments. (c) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1471 / 1479
页数:9
相关论文
共 50 条
  • [1] A PDF micromixing model of dispersion for atmospheric flow. Part 1: development of the model, application to homogeneous turbulence and to neutral boundary layer
    Cassiani, M
    Franzese, P
    Giostra, U
    ATMOSPHERIC ENVIRONMENT, 2005, 39 (08) : 1457 - 1469
  • [2] PDF construction for modeling the pollutant dispersion in convective atmospheric boundary layer
    Ilyushin, BB
    ADVANCES IN TURBULENCE VIII, 2000, : 363 - 366
  • [3] A PDF dispersion model for buoyant plumes in the convective boundary layer
    Weil, JC
    Corio, LA
    Brower, RP
    JOURNAL OF APPLIED METEOROLOGY, 1997, 36 (08): : 982 - 1003
  • [4] A Homogeneous Langevin Equation Model, Part ii: Simulation of Dispersion in the Convective Boundary Layer
    John S. Nasstrom
    Donald L. Ermak
    Boundary-Layer Meteorology, 1999, 92 : 371 - 405
  • [5] A homogeneous Langevin equation model, part II: Simulation of dispersion in the convective boundary layer
    Nasstrom, JS
    Ermak, DL
    BOUNDARY-LAYER METEOROLOGY, 1999, 92 (03) : 371 - 405
  • [6] Numerical solution of atmospheric boundary layer flow.
    Benes, L
    Kozel, K
    Sládek, I
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2000, 80 : S619 - S620
  • [7] Fluid modelling of atmospheric dispersion in the convective boundary layer
    Snyder, WH
    Lawson, RE
    Shipman, MS
    Lu, J
    BOUNDARY-LAYER METEOROLOGY, 2002, 102 (03) : 335 - 366
  • [8] Fluid Modelling Of Atmospheric Dispersion In The Convective Boundary Layer
    William H. Snyder
    Robert E. Lawson
    Michael S. Shipman
    Jie Lu
    Boundary-Layer Meteorology, 2002, 102 : 335 - 366
  • [9] Modeling of contaminant dispersion in the atmospheric convective boundary layer
    Ilyushin, BB
    Kurbatskii, AF
    IZVESTIYA AKADEMII NAUK FIZIKA ATMOSFERY I OKEANA, 1996, 32 (03): : 307 - 322
  • [10] A PDF-based model for boundary layer clouds. Part II: Model results
    Golaz, JC
    Larson, VE
    Cotton, WR
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2002, 59 (24) : 3552 - 3571