Online Multi-Person Tracking using Integral Channel Features

被引:0
|
作者
Kieritz, Hilke [1 ]
Becker, Stefan [1 ]
Huebner, Wolfgang [1 ]
Arens, Michael [1 ]
机构
[1] Fraunhofer IOSB, Gutleuthausstr 1, D-76275 Ettlingen, Germany
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Online multi-person tracking benefits from using an online learned appearance model to associate detections to tracks and further to close gaps in detections. Since Integral Channel Features (ICF) are popular for fast pedestrian detection, we propose an online appearance model that is using the same features without recalculation. The proposed method uses online Multiple-Instance Learning (MIL) to incrementally train an appearance model for each person discriminating against its surrounding. We show that a low number of discriminatingly selected Integral Channel Features are sufficient to achieve state-of-the-art results on the MOT2015 and MOT2016 benchmark.
引用
收藏
页码:122 / 130
页数:9
相关论文
共 50 条
  • [1] Online Multi-Person Tracking by Tracker Hierarchy
    Zhang, Jianming
    Lo Presti, Liliana
    Sclaroff, Stan
    [J]. 2012 IEEE NINTH INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL-BASED SURVEILLANCE (AVSS), 2012, : 379 - 385
  • [2] Online Multi-person Tracking Based on Sparse Representations
    Liao, Min
    Xiao, Guoqiang
    [J]. PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), VOL 1, 2016, : 138 - 142
  • [3] Condensation-based Multi-person Tracking using an Online SVM Approach
    Yang, Tianyu
    Li, Baopu
    Yang, Can
    Meng, Max Q. -H.
    Xu, Guoqing
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2013, : 1983 - 1988
  • [4] Temporal dynamic appearance modeling for online multi-person tracking
    Yang, Min
    Jia, Yunde
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2016, 153 : 16 - 28
  • [5] Hierarchical Online Multi-person Pose Tracking with Multiple Cues
    Xu, Chuanzhi
    Zhou, Yue
    [J]. NEURAL INFORMATION PROCESSING (ICONIP 2018), PT VI, 2018, 11306 : 318 - 328
  • [6] Online Multi-Person Tracking for Intelligent Video Surveillance Systems
    Ju, Jaeyong
    Ku, Bonhwa
    Kim, Daehun
    Song, Taeyup
    Han, David K.
    Ko, Hanseok
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2015, : 345 - 346
  • [7] ONLINE MULTI-PERSON TRACKING VIA ROBUST COLLABORATIVE MODEL
    Naiel, Mohamed A.
    Ahmad, M. Omair
    Swamy, M. N. S.
    Wu, Yi
    Yang, Ming-Hsuan
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 431 - 435
  • [8] Online Multi-Person Tracking-by-Detection Method Using ACF and Particle Filter
    Kokul, T.
    Ramanan, A.
    Pinidiyaarachchi, U. A. J.
    [J]. 2015 IEEE SEVENTH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INFORMATION SYSTEMS (ICICIS), 2015, : 529 - 536
  • [9] Multi-Metric Re-Identification for Online Multi-Person Tracking
    Nodehi, Hamid
    Shahbahrami, Asadollah
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (01) : 147 - 159
  • [10] Online multi-person tracking assist by high-performance detection
    Hua, Weixin
    Mu, Dejun
    Zheng, Zhigao
    Guo, Dawei
    [J]. JOURNAL OF SUPERCOMPUTING, 2020, 76 (06): : 4076 - 4094