Efficient high-charge Laguerre-Gaussian mode conversion by using a periscopic axicon mirror

被引:0
|
作者
Zhang, S. J. [1 ,2 ]
Zhuo, H. B. [3 ]
Yin, Y. [1 ]
Zou, D. B. [1 ]
Zhao, N. [1 ,4 ]
Zhou, W. M. [2 ]
机构
[1] Natl Univ Def Technol, Dept Phys, Changsha 410073, Peoples R China
[2] China Acad Engn Phys CAEP, Laser Fus Res Ctr, Sci & Technol Plasma Phys Lab, Mianyang 6219, Sichuan, Peoples R China
[3] Shenzhen Technol Univ, Ctr Adv Mat Diagnost Technol, Shenzhen 518118, Peoples R China
[4] Hunan Univ Technol & Business, Sch Microelect & Phys, Changsha 410205, Peoples R China
来源
OPTICS EXPRESS | 2022年 / 30卷 / 08期
基金
中国国家自然科学基金;
关键词
ORBITAL ANGULAR-MOMENTUM; QUANTUM ENTANGLEMENT; BEAMS; GENERATION; BESSEL; LIGHT;
D O I
10.1364/OE.452499
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Laguerre-Gaussian (LG) modes can be converted from fundamental Gaussian mode by using phase optical elements such as spiral phase plates (SPP), but the conversion efficiency is strongly reduced in high charge plates because of the transverse intensity deviation. In this paper, a three-step scheme is proposed to dramatically improve the conversion efficiency. First, a fundamental Gaussian beam is converted to a 1st-order LG beam via a 1st-order SPP and a spatial filtering system. Then, by using a periscopic axicon mirror (PAM), the 1st-order LG beam is transformed into an annular beam with larger beam radius. Finally, by using a second high-order SPP, this intensity-matched ring beam can be effectively converted to a high-charge LG(0l) beam. Through optimization of the PAM's parameter, the total conversion efficiency from fundamental Gaussian beam to LG(0l) mode as high as 91.85% is obtained, which is much higher than the case without PAM. Numerical simulations are carried out by the particle-in-cell (PIC) code EPOCH to verify the effectiveness of the scheme. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:12952 / 12963
页数:12
相关论文
共 50 条
  • [1] Entanglement of a Laguerre-Gaussian cavity mode with a rotating mirror
    Bhattacharya, M.
    Giscard, P. -L.
    Meystre, P.
    PHYSICAL REVIEW A, 2008, 77 (01)
  • [2] Efficient Laguerre-Gaussian mode conversion for orbital angular momentum resolved spectroscopy
    Toda, Y.
    Shigematsu, K.
    Yamane, K.
    Morita, R.
    OPTICS COMMUNICATIONS, 2013, 308 : 147 - 151
  • [3] Optical system for Laguerre-Gaussian Hermite-Gaussian mode conversion
    Bekshaev, A
    Popov, A
    SECOND INTERNATIONAL CONFERENCE ON SINGULAR OPTICS (OPTICAL VORTICES): FUNDAMENTALS AND APPLICATIONS, 2001, 4403 : 297 - 302
  • [4] Efficient mode transformations of degenerate Laguerre-Gaussian beams
    Machavariani, G
    Ishaaya, AA
    Shimshi, L
    Davidson, N
    Friesem, AA
    Hasman, E
    APPLIED OPTICS, 2004, 43 (12) : 2561 - 2567
  • [5] Laguerre-Gaussian mode sorters of high spatial mode count
    Fontaine, Nicolas K.
    Ryf, Roland
    Chen, Haoshuo
    Neilson, David T.
    Kim, Kwangwoong
    Carpenter, Joel
    ADVANCES IN OPTICAL ASTRONOMICAL INSTRUMENTATION 2019, 2020, 11203
  • [6] Mode conversion efficiency to Laguerre-Gaussian OAM modes using spiral phase optics
    Longman, Andrew
    Fedosejevs, Robert
    OPTICS EXPRESS, 2017, 25 (15): : 17382 - 17392
  • [7] Cooling a Rotating Mirror Coupled to a Single Laguerre-Gaussian Cavity Mode Using Parametric Interactions
    Pan, Qiaoyun
    Lv, Weiyu
    Deng, Li
    Huang, Sumei
    Chen, Aixi
    NANOMATERIALS, 2022, 12 (20)
  • [8] Using a Laguerre-Gaussian beam to trap and cool the rotational motion of a mirror
    Bhattacharya, M.
    Meystre, P.
    PHYSICAL REVIEW LETTERS, 2007, 99 (15)
  • [9] Conversion of high-order Laguerre-Gaussian beams into Bessel beams of increased, reduced or zeroth order by use of a helical axicon
    Topuzoski, S.
    Janicijevic, Lj.
    OPTICS COMMUNICATIONS, 2009, 282 (17) : 3426 - 3432
  • [10] High-quality reconstruction of an optical image by an efficient Laguerre-Gaussian mode decomposition method
    Ma, Jiantao
    Wei, Dan
    Wang, Luyi
    Zhang, Yong
    Xiao, Min
    OSA CONTINUUM, 2021, 4 (05): : 1396 - 1403