A multi-site, multi-participant magnetoencephalography resting-state dataset to study dementia: The BioFIND dataset

被引:3
|
作者
Vaghari, Delshad [1 ,2 ]
Bruna, Ricardo [3 ,4 ]
Hughes, Laura E. [1 ]
Nesbitt, David [1 ]
Tibon, Roni [1 ]
Rowe, James B. [1 ,5 ]
Maestu, Fernando [3 ,4 ]
Henson, Richard N. [1 ,6 ]
机构
[1] Univ Cambridge, MRC Cognit & Brain Sci Unit, Cambridge, England
[2] Tarbiat Modares Univ, Dept Elect & Comp Engn, Tehran, Iran
[3] Univ Complutense Madrid, Dept Expt Psychol, Madrid, Spain
[4] Lab Cognit & Computat Neurosci UCM UPM, Ctr Biomed Technol, Madrid, Spain
[5] Univ Cambridge, Cambridge Univ Hosp NHS Trust, Dept Clin Neurosci, Cambridge, England
[6] Univ Cambridge, Dept Psychiat, Cambridge, England
基金
英国生物技术与生命科学研究理事会; 英国惠康基金;
关键词
MILD COGNITIVE IMPAIRMENT; TEST-RETEST RELIABILITY; ALZHEIMERS-DISEASE; MEG; CONNECTIVITY; BIOMARKERS; NEURODEGENERATION; MRI; MCI;
D O I
10.1016/j.neuroimage.2022.119344
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Early detection of Alzheimer's Disease (AD) is vital to reduce the burden of dementia and for developing effective treatments. Neuroimaging can detect early brain changes, such as hippocampal atrophy in Mild Cognitive Impairment (MCI), a prodromal state of AD. However, selecting the most informative imaging features by machine-learning requires many cases. While large publically-available datasets of people with dementia or prodromal disease exist for Magnetic Resonance Imaging (MRI), comparable datasets are missing for Magnetoencephalography (MEG). MEG offers advantages in its millisecond resolution, revealing physiological changes in brain oscillations or connectivity before structural changes are evident with MRI. We introduce a MEG dataset with 324 individuals: patients with MCI and healthy controls. Their brain activity was recorded while resting with eyes closed, using a 306-channel MEG scanner at one of two sites (Madrid or Cambridge), enabling tests of generalization across sites. A T1-weighted MRI is provided to assist source localisation. The MEG and MRI data are formatted according to international BIDS standards and analysed freely on the DPUK platform (https://portal.dementiasplatform.uk/Apply). Here, we describe this dataset in detail, report some example (benchmark) analyses, and consider its limitations and future directions.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Consistency of resting-state networks in a multi-centre dataset
    Huf, W.
    Kalcher, K.
    Boubela, R.
    Kasper, S.
    Moser, E.
    Windischberger, C.
    [J]. EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2012, 22 : S201 - S202
  • [2] A multi-site, multi-disorder resting-state magnetic resonance image database
    Tanaka, Saori C.
    Yamashita, Ayumu
    Yahata, Noriaki
    Itahashi, Takashi
    Lisi, Giuseppe
    Yamada, Takashi
    Ichikawa, Naho
    Takamura, Masahiro
    Yoshihara, Yujiro
    Kunimatsu, Akira
    Okada, Naohiro
    Hashimoto, Ryuichiro
    Okada, Go
    Sakai, Yuki
    Morimoto, Jun
    Narumoto, Jin
    Shimada, Yasuhiro
    Mano, Hiroaki
    Yoshida, Wako
    Seymour, Ben
    Shimizu, Takeshi
    Hosomi, Koichi
    Saitoh, Youichi
    Kasai, Kiyoto
    Kato, Nobumasa
    Takahashi, Hidehiko
    Okamoto, Yasumasa
    Yamashita, Okito
    Kawato, Mitsuo
    Imamizu, Hiroshi
    [J]. SCIENTIFIC DATA, 2021, 8 (01)
  • [3] A multi-site, multi-disorder resting-state magnetic resonance image database
    Saori C. Tanaka
    Ayumu Yamashita
    Noriaki Yahata
    Takashi Itahashi
    Giuseppe Lisi
    Takashi Yamada
    Naho Ichikawa
    Masahiro Takamura
    Yujiro Yoshihara
    Akira Kunimatsu
    Naohiro Okada
    Ryuichiro Hashimoto
    Go Okada
    Yuki Sakai
    Jun Morimoto
    Jin Narumoto
    Yasuhiro Shimada
    Hiroaki Mano
    Wako Yoshida
    Ben Seymour
    Takeshi Shimizu
    Koichi Hosomi
    Youichi Saitoh
    Kiyoto Kasai
    Nobumasa Kato
    Hidehiko Takahashi
    Yasumasa Okamoto
    Okito Yamashita
    Mitsuo Kawato
    Hiroshi Imamizu
    [J]. Scientific Data, 8
  • [4] Uncovering multi-site identifiability based on resting-state functional connectomes
    Bari, Sumra
    Amico, Enrico
    Vike, Nicole
    Talavage, Thomas M.
    Goni, Joaquon
    [J]. NEUROIMAGE, 2019, 202
  • [5] Resting-state functional connectivity of the raphe nuclei in major depressive Disorder: A Multi-site study
    Zhang, Yajuan
    Huang, Chu-Chung
    Zhao, Jiajia
    Liu, Yuchen
    Xia, Mingrui
    Wang, Xiaoqin
    Wei, Dongtao
    Chen, Yuan
    Liu, Bangshan
    Zheng, Yanting
    Wu, Yankun
    Chen, Taolin
    Cheng, Yuqi
    Xu, Xiufeng
    Gong, Qiyong
    Si, Tianmei
    Qiu, Shijun
    Cheng, Jingliang
    Tang, Yanqing
    Wang, Fei
    Qiu, Jiang
    Xie, Peng
    Li, Lingjiang
    He, Yong
    Lin, Ching-Po
    Lo, Chun-Yi Zac
    [J]. NEUROIMAGE-CLINICAL, 2023, 37
  • [6] Using DeepGCN to identify the autism spectrum disorder from multi-site resting-state data
    Cao, Menglin
    Yang, Ming
    Qin, Chi
    Zhu, Xiaofei
    Chen, Yanni
    Wang, Jue
    Liu, Tian
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 70
  • [7] Multi-site clustering and nested feature extraction for identifying autism spectrum disorder with resting-state fMRI
    Wang, Nan
    Yao, Dongren
    Ma, Lizhuang
    Liu, Mingxia
    [J]. MEDICAL IMAGE ANALYSIS, 2022, 75
  • [8] Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example
    Abraham, Alexandre
    Milham, Michael P.
    Di Martino, Adriana
    Craddock, R. Cameron
    Samaras, Dimitris
    Thirion, Bertrand
    Varoquaux, Gael
    [J]. NEUROIMAGE, 2017, 147 : 736 - 745
  • [9] A multi-site resting state fMRI study on the amplitude of low frequency fluctuations in schizophrenia
    Turner, Jessica A.
    Damaraju, Eswar
    van Erp, Theog. M.
    Mathalon, Daniel H.
    Ford, Judith M.
    Voyvodic, James
    Mueller, Bryon A.
    Belger, Aysenil
    Bustillo, Juan
    McEwen, Sarah
    Potkin, Steven G.
    Calhoun, Vince D.
    [J]. FRONTIERS IN NEUROSCIENCE, 2013, 7
  • [10] Towards A Multi-Site International Public Dataset For The Validation Of Retinal Image Analysis Software
    Trucco, Emanuele
    Ruggeri, Alfredo
    [J]. 2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 7152 - 7155