Minimizing user interaction by automatic and semi-automatic relevance feedback for image retrieval

被引:0
|
作者
Muneesawang, P [1 ]
Guan, L [1 ]
机构
[1] Univ Sydney, Sch Elec & Info Engn, Sydney, NSW 2006, Australia
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes the unsupervised-interactive learning method, using SOTM architecture, for the automation of relevance feedback (RF) in content-based image retrieval. The SOTM is shown to exhibit good behavior in relevance classification; providing a possible solution to minimizing user interactions in both fully automatic and semiautomatic domains, while achieving high retrieval accuracy in the context of adaptive retrieval. Computer simulation shows this system is very effective when applied to compressed domain retrieval systems for texture retrieval and the JPEG photograph database applications.
引用
下载
收藏
页码:601 / 604
页数:4
相关论文
共 50 条
  • [1] A Framework for Semi-Automatic Image Annotation Using Relevance Feedback
    Yang, Jun
    Zhu, Shi-Jiao
    INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING BIOMEDICAL ENGINEERING, AND INFORMATICS (SPBEI 2013), 2014, : 408 - 415
  • [2] Semi-Automatic BPT for Image Retrieval
    Ghanbari, Shirin
    Woods, John C.
    Lucas, Simon M.
    CBMI: 2009 INTERNATIONAL WORKSHOP ON CONTENT-BASED MULTIMEDIA INDEXING, 2009, : 33 - 37
  • [3] Adaptive video indexing and automatic/semi-automatic relevance feedback
    Munesawang, P
    Guan, L
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2005, 15 (08) : 1032 - 1046
  • [4] Iterative Learning for Semi-automatic Annotation Using User Feedback
    Guemimi, Meryem
    Camara, Daniel
    Genoe, Ray
    INTELLIGENT TECHNOLOGIES AND APPLICATIONS, 2022, 1616 : 31 - 44
  • [5] Semi-automatic feature-adaptive relevance feedback (SA-FR-RF) for content-based image retrieval
    Grigorova, A
    De Natale, FGB
    VISUAL INFORMATION AND INFORMATION SYSTEMS, 2006, 3736 : 153 - 162
  • [6] Semi-automatic image annotation
    Liu, WY
    Dumais, S
    Sun, YF
    Zhang, HJ
    Czerwinski, M
    Field, B
    HUMAN-COMPUTER INTERACTION - INTERACT'01, 2001, : 326 - 333
  • [7] An automatic relevance feedback in image retrieval using belief functions
    Kharbouche, S
    Vannorenberghe, P
    Lecomte, C
    Miché, P
    ADVANCES IN VISUAL COMPUTING, PROCEEDINGS, 2005, 3804 : 704 - 709
  • [8] An image retrieval and semi-automatic annotation scheme for large image databases on the Web
    Zhu, XQ
    Liu, WY
    Zhang, HJ
    Wu, LD
    INTERNET IMAGING II, 2001, 4311 : 168 - 177
  • [9] Automatic relevance feedback for video retrieval
    Muneesawang, P
    Guan, L
    2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PROCEEDINGS: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING SIGNAL, PROCESSING EDUCATION, 2003, : 1 - 4
  • [10] Automatic relevance feedback for video retrieval
    Muneesawang, P
    Guan, L
    2003 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL II, PROCEEDINGS, 2003, : 373 - 376