Parameter-uniform numerical method for global solution and global normalized flux of singularly perturbed boundary value problems using grid equidistribution

被引:23
|
作者
Mohapatra, Jugal [2 ]
Natesan, Srinivasan [1 ]
机构
[1] Indian Inst Technol, Dept Math, Gauhati 781039, India
[2] Inst Math & Applicat, Bhubaneswar 751003, Orissa, India
关键词
Singularly perturbed convection-diffusion problems; Upwind scheme; Adaptive mesh; Normalized flux; Uniform convergence; FINITE-DIFFERENCE APPROXIMATIONS; CONVERGENCE ANALYSIS; DERIVATIVES;
D O I
10.1016/j.camwa.2010.07.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present the analysis of an upwind scheme for obtaining the global solution and the normalized flux for a convection-diffusion two-point boundary value problem. The solution of the upwind scheme is obtained on a suitable nonuniform mesh which is formed by equidistributing the arc-length monitor function. It is shown that the discrete solution obtained by the upwind scheme and the global solution obtained via interpolation converges uniformly with respect to the perturbation parameter. In addition, we prove the uniform first-order convergence of the weighted derivative of the numerical solution on this nonuniform mesh and the uniform convergence of the global normalized flux on the whole domain. Numerical results are presented that demonstrate the sharpness of our results. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1924 / 1939
页数:16
相关论文
共 50 条
  • [1] Parameter-uniform numerical methods for singularly perturbed mixed boundary value problems using grid equidistribution
    Mohapatra J.
    Natesan S.
    Journal of Applied Mathematics and Computing, 2011, 37 (1-2) : 247 - 265
  • [2] A parameter-uniform grid equidistribution method for singularly perturbed degenerate parabolic convection-diffusion problems
    Kumar, Sunil
    Sumit, Jesus
    Vigo-Aguiar, Jesus
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 404
  • [3] A robust second-order numerical method for global solution and global normalized flux of singularly perturbed self-adjoint boundary-value problems
    Clavero, C.
    Bawa, R. K.
    Natesan, S.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (10-11) : 1731 - 1745
  • [4] Parameter-uniform numerical treatment of singularly perturbed initial-boundary value problems with large delay
    Kumar, Devendra
    Kumari, Parvin
    APPLIED NUMERICAL MATHEMATICS, 2020, 153 : 412 - 429
  • [5] A Parameter-uniform Method for Two Parameters Singularly Perturbed Boundary Value Problems via Asymptotic Expansion
    Kumar, D.
    Yadaw, A. S.
    Kadalbajoo, M. K.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (04): : 1525 - 1532
  • [6] Parameter-uniform numerical methods for a class of singularly perturbed problems with a Neumann boundary condition
    Farrell, PA
    Hegarty, AF
    Miller, JJH
    O'Riordan, E
    Shishkin, GI
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2001, 1988 : 292 - 303
  • [7] A parameter-uniform numerical method for singularly perturbed Burgers' equation
    Derzie, Eshetu B.
    Munyakazi, Justin B.
    Gemechu, Tekle
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (06):
  • [8] A parameter-uniform numerical method for singularly perturbed Burgers’ equation
    Eshetu B. Derzie
    Justin B. Munyakazi
    Tekle Gemechu
    Computational and Applied Mathematics, 2022, 41
  • [9] Parameter-uniform numerical methods for some singularly perturbed nonlinear initial value problems
    O'Riordan, Eugene
    Quinn, Jason
    NUMERICAL ALGORITHMS, 2012, 61 (04) : 579 - 611
  • [10] Parameter-uniform numerical methods for some singularly perturbed nonlinear initial value problems
    Eugene O’Riordan
    Jason Quinn
    Numerical Algorithms, 2012, 61 : 579 - 611