Deep learning enables fast and dense single-molecule localization with high accuracy

被引:133
|
作者
Speiser, Artur [1 ,2 ,3 ,4 ]
Mueller, Lucas-Raphael [5 ,6 ]
Hoess, Philipp [5 ]
Matti, Ulf [5 ]
Obara, Christopher J. [7 ]
Legant, Wesley R. [8 ,9 ,10 ]
Kreshuk, Anna [5 ]
Macke, Jakob H. [1 ,2 ,3 ,11 ]
Ries, Jonas [5 ]
Turaga, Srinivas C. [7 ]
机构
[1] Tubingen Univ, Machine Learning Sci, Excellence Cluster Machine Learning, Tubingen, Germany
[2] Tech Univ Munich, Dept Elect & Comp Engn, Computat Neuroengn, Munich, Germany
[3] Max Planck Gesell, Res Ctr Caesar, Bonn, Germany
[4] Int Max Planck Res Sch Brain & Behav, Bonn, FL USA
[5] European Mol Biol Lab, Cell Biol & Biophys Unit, Heidelberg, Germany
[6] Heidelberg Univ, Heidelberg, Germany
[7] HHMI Janelia Res Campus, Ashburn, VA USA
[8] UNC, Joint Dept Biomed Engn, Chapel Hill, NC USA
[9] NCSU, Raleigh, NC USA
[10] Univ N Carolina, Dept Pharmacol, Chapel Hill, NC 27515 USA
[11] Max Planck Inst Intelligent Syst, Dept Empir Inference, Tubingen, Germany
基金
美国国家卫生研究院; 欧洲研究理事会;
关键词
OPTICAL RECONSTRUCTION MICROSCOPY; RESOLUTION;
D O I
10.1038/s41592-021-01236-x
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-molecule localization microscopy (SMLM) has had remarkable success in imaging cellular structures with nanometer resolution, but standard analysis algorithms require sparse emitters, which limits imaging speed and labeling density. Here, we overcome this major limitation using deep learning. We developed DECODE (deep context dependent), a computational tool that can localize single emitters at high density in three dimensions with highest accuracy for a large range of imaging modalities and conditions. In a public software benchmark competition, it outperformed all other fitters on 12 out of 12 datasets when comparing both detection accuracy and localization error, often by a substantial margin. DECODE allowed us to acquire fast dynamic live-cell SMLM data with reduced light exposure and to image microtubules at ultra-high labeling density. Packaged for simple installation and use, DECODE will enable many laboratories to reduce imaging times and increase localization density in SMLM. DECODE uses deep learning for localizing single emitters in high-density two-dimensional and three-dimensional single-molecule localization microscopy data. DECODE outperforms available methods and enables fast live-cell SMLM of dynamic processes.
引用
收藏
页码:1082 / +
页数:25
相关论文
共 50 条
  • [1] Deep learning enables fast and dense single-molecule localization with high accuracy
    Artur Speiser
    Lucas-Raphael Müller
    Philipp Hoess
    Ulf Matti
    Christopher J. Obara
    Wesley R. Legant
    Anna Kreshuk
    Jakob H. Macke
    Jonas Ries
    Srinivas C. Turaga
    Nature Methods, 2021, 18 : 1082 - 1090
  • [2] Publisher Correction: Deep learning enables fast and dense single-molecule localization with high accuracy
    Artur Speiser
    Lucas-Raphael Müller
    Philipp Hoess
    Ulf Matti
    Christopher J. Obara
    Wesley R. Legant
    Anna Kreshuk
    Jakob H. Macke
    Jonas Ries
    Srinivas C. Turaga
    Nature Methods, 2021, 18 : 1410 - 1410
  • [3] Deep learning enables fast and dense single-molecule localization with high accuracy (vol 18, pg 1082, 2021)
    Speiser, Artur
    Muller, Lucas-Raphael
    Hoess, Philipp
    Matti, Ulf
    Obara, Christopher J.
    Legant, Wesley R.
    Kreshuk, Anna
    Macke, Jakob H.
    Ries, Jonas
    Turaga, Srinivas C.
    NATURE METHODS, 2021, 18 (11) : 1410 - 1410
  • [4] Enhancing single-molecule localization microscopy with deep learning
    Abdehkakha, Armin
    Madani, Seyyed mohammad navid
    Snoeyink, Craig
    APPLIED OPTICS, 2025, 64 (05) : A19 - A30
  • [5] Localization accuracy in single-molecule microscopy
    Ober, RJ
    Ram, S
    Ward, ES
    BIOPHYSICAL JOURNAL, 2004, 86 (02) : 1185 - 1200
  • [6] Deep learning using a residual deconvolutional network enables real-time high-density single-molecule localization microscopy
    Zhou, Zhiwei
    Wu, Junnan
    Wang, Zhengxia
    Huang, Zhen-li
    BIOMEDICAL OPTICS EXPRESS, 2023, 14 (04) : 1833 - 1847
  • [7] Event-based vision sensor for fast and dense single-molecule localization microscopy
    Cabriel, Clement
    Monfort, Tual
    Specht, Christian G.
    Izeddin, Ignacio
    NATURE PHOTONICS, 2023, 17 (12) : 1105 - +
  • [8] Deep learning-based spectroscopic single-molecule localization microscopy
    Gaire, Sunil Kumar
    Daneshkhah, Ali
    Flowerday, Ethan
    Gong, Ruyi
    Frederick, Jane
    Backman, Vadim
    JOURNAL OF BIOMEDICAL OPTICS, 2024, 29 (06)
  • [9] Deep learning for single-molecule science
    Albrecht, Tim
    Slabaugh, Gregory
    Alonso, Eduardo
    Al-Arif, S. M. Masudur R.
    NANOTECHNOLOGY, 2017, 28 (42)
  • [10] Accelerating multicolor spectroscopic single-molecule localization microscopy using deep learning
    Gaire, Sunil Kumar
    Zhang, Yang
    Li, Hongyu
    Yu, Ray
    Zhang, Hao F.
    Ying, Leslie
    BIOMEDICAL OPTICS EXPRESS, 2020, 11 (05): : 2705 - 2721