Confidence intervals based on robust regression

被引:2
|
作者
Field, C
Zhou, J
机构
[1] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 3J5, Canada
[2] Univ Victoria, Victoria, BC, Canada
关键词
bootstrap; change of variance function; correlated errors; M-estimator; robust confidence interval;
D O I
10.1016/S0378-3758(02)00168-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider constructing reliable confidence intervals for regression parameters using robust M-estimation allowing for the possibility of time series correlation among the errors. The change of variance function is used to approximate the theoretical coverage for confidence intervals based on uncorrelated errors. Bootstrap techniques for dependent data and weighted empirical adaptive variance estimators are used to construct three variance estimates. A simulation study is conducted to investigate the performance of those variance estimates for small and large sample sizes. In particular, the simulated empirical coverages are examined for various models of correlated errors. Our procedures show improvement over intervals based on independence but do illustrate the need for caution in carrying out inference in linear models for moderate sample sizes if correlation among the errors is suspected. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:425 / 439
页数:15
相关论文
共 50 条
  • [1] Robust confidence intervals for regression parameters
    Field, CA
    Welsh, AH
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 1998, 40 (01) : 53 - 64
  • [2] On Confidence Intervals of Robust Regression Estimators
    Lee, Dong-Hee
    Park, YouSung
    Kim, Kee Whan
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2006, 19 (01) : 97 - 110
  • [3] Robust regression and small sample confidence intervals
    Field, CA
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 57 (01) : 39 - 48
  • [4] Globally robust confidence intervals for simple linear regression
    Adrover, Jorge
    Salibian-Barrera, Matias
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (12) : 2899 - 2913
  • [5] Confidence Intervals Based on Robust Estimators
    Cetin, Meral
    Aktas, Serpil
    [J]. JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2008, 7 (01) : 253 - 258
  • [6] Robust confidence intervals for meta-regression with interaction effects
    Thurow, Maria
    Welz, Thilo
    Knop, Eric
    Friede, Tim
    Pauly, Markus
    [J]. COMPUTATIONAL STATISTICS, 2024,
  • [7] ROBUST NONPARAMETRIC CONFIDENCE INTERVALS FOR REGRESSION-DISCONTINUITY DESIGNS
    Calonico, Sebastian
    Cattaneo, Matias D.
    Titiunik, Rocio
    [J]. ECONOMETRICA, 2014, 82 (06) : 2295 - 2326
  • [9] Confidence intervals for two robust regression lines with a heteroscedastic error term
    Wilcox, RR
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1996, 49 : 163 - 170
  • [10] Confidence intervals in monotone regression
    Groeneboom, Piet
    Jongbloed, Geurt
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2024,