Turbulent transition simulation using the k-ω model

被引:0
|
作者
Zheng, XQ
Liu, CQ
Liu, F
Yang, CI
机构
[1] Louisiana Tech Univ, Dept Math & Stat, Ruston, LA 71270 USA
[2] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92717 USA
[3] NSWC Bethesda, Carderock Div, Hydromech Directorate, Bethesda, MD USA
关键词
turbulent transition; turbulence modelling; Navier-Stokes equation;
D O I
10.1002/(SICI)1097-0207(19980715)42:5<907::AID-NME393>3.0.CO;2-T
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper describes a novel approach in simulating laminar to turbulent transition by using two-equation models. The Total Stresses Limitation (TSL) concept is used to make the two-equation model capable of predicting high-Reynolds-number transitional flow. In order to handle the transition triggered by laminar separation at a low Reynolds number location, which commonly occurs in high speed flow, a sensor is introduced to detect separation and trigger transition in the separated zone. Test cases include the classical flat-plate turbulent boundary flow, and low-pressure turbine cascade flows at design and off-design conditions. (C) 1998 John Wiley & Sons, Ltd.
引用
收藏
页码:907 / 926
页数:20
相关论文
共 50 条
  • [1] Numerical simulation of variable density subsonic turbulent jets by using the k-ε model
    Gazzah, MH
    Sassi, M
    Sarh, B
    Gökalp, I
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2002, 41 (01) : 51 - 62
  • [2] AN ALGEBRAIC INTERMITTENCY MODEL ADDED TO THE k-ω RANS MODEL FOR TRANSITION SIMULATION
    Kubacki, S.
    Gorecki, B.
    Dick, E.
    11TH EUROPEAN CONFERENCE ON TURBOMACHINERY: FLUID DYNAMICS AND THERMODYNAMICS, 2015,
  • [3] Calculations of turbulent flows with pressure gradients using a k-Ε model
    Hattori, Hirofumi
    Nagano, Yasutaka
    Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 1993, 59 (560): : 1043 - 1048
  • [4] Prediction of turbulent buoyant flow using an RNG k-ε model
    Gan, GH
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 1998, 33 (02) : 169 - 189
  • [5] On computations of complex turbulent flow by using nonlinear k-ω model
    Song, B
    Amano, RS
    Liu, GR
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2001, 39 (05) : 421 - 434
  • [6] Numerical simulation of buoyancy-dominated turbulent diffusion flames by using Large Eddy Simulation and k-ε turbulence model
    Wang, HY
    Joulain, P
    COMBUSTION SCIENCE AND TECHNOLOGY IN ASIA-PACIFIC AREA: TODAY AND TOMORROW, 2003, : 132 - 135
  • [7] Numerical simulation of strongly swirling turbulent flows in liquid-liquid hydrocyclones using k-ε model
    Lu, Yaojun
    Zhou, Lixing
    Shen, Xiong
    Jisuan Jiegou Lixue Jiqi Yingyong/Journal of Computational Structural Mechanics and Applications, 2000, 17 (03): : 267 - 272
  • [8] DNS and k-ε model simulation of MHD turbulent channel flows with heat transfer
    Yamamoto, Y.
    Kunugi, T.
    Satake, S.
    Smolentsev, S.
    FUSION ENGINEERING AND DESIGN, 2008, 83 (7-9) : 1309 - 1312
  • [9] Turbulent Schmidt numbers for CFD simulations using the k-ε and k-ω models
    Martinez, Manuel
    Pallares, Jordi
    Vernet, Anton
    PROGRESS IN COMPUTATIONAL FLUID DYNAMICS, 2016, 16 (06): : 356 - 363
  • [10] NUMERICAL PREDICTION OF TURBULENT FLOW IN A CONICAL DIFFUSER USING k-ε MODEL
    何永森
    ToshioKobayashi
    YouheiMorinishi
    Acta Mechanica Sinica, 1992, (02) : 117 - 126