Indiscrete metal/metal-N-C synergic active sites for efficient and durable oxygen electrocatalysis toward advanced Zn-air batteries

被引:125
|
作者
Zheng, Xiangjun [1 ]
Cao, Xuecheng [1 ]
Sun, Zhihui [1 ]
Zeng, Kai [1 ]
Yan, Jin [1 ]
Strasser, Peter [2 ]
Chen, Xin [3 ]
Sun, Shuhui [4 ]
Yang, Ruizhi [1 ]
机构
[1] Soochow Univ, Coll Energy, Soochow Inst Energy & Mat Innovat, Suzhou 215006, Peoples R China
[2] Tech Univ Berlin, Dept Chem, Chem Engn Div, D-10623 Berlin, Germany
[3] Southwest Petr Univ, Coll Chem & Chem Engn, Ctr Computat Chem & Mol Simulat, Chengdu 610500, Peoples R China
[4] Inst Natl Rech Sci INRS EnergieMat & Commun, Varennes, PQ J3X 1S2, Canada
基金
中国国家自然科学基金;
关键词
Metal/Metal-N-C; NaCl template; Synergic active sites; Oxygen electrocatalysis; Zn-air batteries; NITROGEN-DOPED CARBON; EVOLUTION REACTION; BIFUNCTIONAL ELECTROCATALYST; REDUCTION REACTION; POROUS CARBON; FUEL-CELL; CATALYSTS; GRAPHENE; NANOPARTICLES; STABILITY;
D O I
10.1016/j.apcatb.2020.118967
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon has been deemed promising electrocatalyst for oxygen reduction/evolution reaction (ORR/OER). However, most carbon materials are not stable in highly oxidative OER environments. Herein, nitrogen (N) and transition metal (TM) co-doped carbon nanosheets hybridizing with transition metal (TM/TM-N-C, TM= Fe, Co, Ni) are developed from biomass lysine by employing a NaCl template and molten-salt-promoted graphitization process. Among the as-synthesized TM/TM-N-C, the Ni/Ni-N-C with Ni nanocubes embedded in carbon demonstrates an excellent ORR-OER stability during the potential of 0.06-1.96 V. The rechargeable Zn-air battery with the fabricated Ni/Ni-N-C as the cathode catalyst produces a low voltage gap of 0.773 V, which is only slightly increased by 5 % after 150 cycles testing. Combined experimental and theoretical studies reveal that the exceptional activity and ORR-OER wide potential durability of Ni/Ni-N-C can be ascribed to highly active Ni-N-4-C configuration, synergistic effect between Ni and Ni-N-4-C, carbon nanosheets structure and formation of stable Ni3+-N for protecting carbon from oxidation.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Engineering the Surface Metal Active Sites of Nickel Cobalt Oxide Nanoplates toward Enhanced Oxygen Electrocatalysis for Zn-Air Battery
    Zhao, Jun
    He, Yu
    Chen, Zelin
    Zheng, Xuerong
    Han, Xiaopeng
    Rao, Dewei
    Zhong, Cheng
    Hu, Wenbin
    Deng, Yida
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (05) : 4915 - 4921
  • [2] Carbon Nanosheets Containing Discrete Co-Nx-By-C Active Sites for Efficient Oxygen Electrocatalysis and Rechargeable Zn-Air Batteries
    Guo, Yingying
    Yuan, Pengfei
    Zhang, Jianan
    Hu, Yongfeng
    Amiinu, Ibrahim Saana
    Wang, Xin
    Zhou, Jigang
    Xia, Huicong
    Song, Zhibo
    Xu, Qun
    Mu, Shichun
    ACS NANO, 2018, 12 (02) : 1894 - 1901
  • [3] Confined N-CoSe2 active sites boost bifunctional oxygen electrocatalysis for rechargeable Zn-air batteries
    Ding, Kuixing
    Hu, Jiugang
    Luo, Jia
    Jin, Wei
    Zhao, Liming
    Zheng, Lirong
    Yan, Wensheng
    Weng, Baicheng
    Hou, Hongshuai
    Ji, Xiaobo
    NANO ENERGY, 2022, 91
  • [4] S-Block Metal Mg-Mediated Co―N―C as Efficient Oxygen Electrocatalyst for Durable and Temperature-Adapted Zn-Air Batteries
    Wang, Henan
    Niu, Xinxin
    Liu, Wenxian
    Yin, Ruilian
    Dai, Jiale
    Guo, Wei
    Kong, Chao
    Ma, Lu
    Ding, Xia
    Wu, Fangfang
    Shi, Wenhui
    Deng, Tianqi
    Cao, Xiehong
    ADVANCED SCIENCE, 2024, 11 (34)
  • [5] Highly efficient and active Co-N-C catalysts for oxygen reduction and Zn-air batteries
    Lei, Cong
    Yang, Rongzhong
    Zhao, Jianan
    Tang, Wenbin
    Miao, Fadong
    Huang, Qinghong
    Wu, Yuping
    FRONTIERS IN ENERGY, 2024, 18 (04) : 436 - 446
  • [6] Physical upcycling of spent artificial diamond accelerant into bifunctional oxygen electrocatalyst with dual-metal active sites for durable rechargeable Zn-air batteries
    Ding, Kuixing
    Hu, Jiugang
    Zhao, Liming
    Jin, Wei
    Yu, Huanan
    Liu, Yunpeng
    Wu, Zhonghua
    Cai, Shan
    Yang, Yi
    Zou, Guoqiang
    Hou, Hongshuai
    Ji, Xiaobo
    NANO ENERGY, 2024, 121
  • [7] Redox Activity of Co Species in the Active Sites of CoNx/CoOx Facilitates Oxygen Electrocatalysis for Zn-Air Batteries
    Yang, Huimin
    Wang, Hao
    Cheng, Haorong
    Xu, Xinyuan
    Li, Jing
    He, Xiaoyan
    Tian, Lin
    Li, Zhao
    Chemistry - A European Journal, 2024, 30 (69)
  • [8] Highly active and durable carbon nitride fibers as metal-free bifunctional oxygen electrodes for flexible Zn-air batteries
    Shinde, Sambhaji S.
    Yu, Jin-Young
    Song, Jae-Won
    Nam, Yoon-Ho
    Kim, Dong-Hyung
    Lee, Jung-Ho
    NANOSCALE HORIZONS, 2017, 2 (06) : 333 - 341
  • [9] Preferentially Engineering FeN4 Edge Sites onto Graphitic Nanosheets for Highly Active and Durable Oxygen Electrocatalysis in Rechargeable Zn-Air Batteries
    Xiao, Meiling
    Xing, Zihao
    Jin, Zhao
    Liu, Changpeng
    Ge, Junjie
    Zhu, Jianbing
    Wang, Ying
    Zhao, Xiao
    Chen, Zhongwei
    ADVANCED MATERIALS, 2020, 32 (49)
  • [10] Binary Metal Sulfide Nanoparticles as a Bifunctional Electrocatalyst for Durable Zn-Air Batteries
    Li, Mei-Qi
    Xiang, Yang
    Li, Ping
    Ren, Yu-Ting
    Hao, Hong-Guo
    Dou, Jian-Min
    Ma, Hui-Yan
    Wang, Su-Na
    Li, Yun-Wu
    ACS Applied Nano Materials, 2025, 8 (07) : 3575 - 3583