On the density of shapes in three-dimensional affine subdivision

被引:0
|
作者
Luo, Qianghua [1 ,2 ]
Wang, Jieyan [1 ,2 ]
机构
[1] Hunan Univ, Sch Math, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Hunan Prov Key Lab Intelligent Informat Proc & Ap, Changsha 410082, Hunan, Peoples R China
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 05期
关键词
barycentric subdivision; affine subdivision; dense set; tetrahedra; simplex; BARYCENTRIC SUBDIVISION; SEMIGROUPS;
D O I
10.3934/math.2020345
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The affine subdivision of a simplex Delta is a certain collection of (n + 1)! smaller n-simplices whose union is Delta. Barycentric subdivision is a well know example of affine subdivision(see ). Richard Schwartz(2003) proved that the infinite process of iterated barycentric subdivision on a tetrahedron produces a dense set of shapes of smaller tetrahedra. We prove that the infinite iteration of several kinds of affine subdivision on a tetrahedron produce dense sets of shapes of smaller tetrahedra, respectively.
引用
收藏
页码:5381 / 5388
页数:8
相关论文
共 50 条
  • [1] The Density of Shapes in Three-Dimensional Barycentric Subdivision
    Richard Evan Schwartz
    [J]. Discrete & Computational Geometry, 2003, 30 : 373 - 377
  • [2] The density of shapes in three-dimensional barycentric subdivision
    Schwartz, RE
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2003, 30 (03) : 373 - 377
  • [3] Three-dimensional beta shapes
    Kim, Deok-Soo
    Seo, Jeongyeon
    Kim, Donguk
    Ryu, Joonghyun
    Cho, Cheol-Hyung
    [J]. COMPUTER-AIDED DESIGN, 2006, 38 (11) : 1179 - 1191
  • [4] Affine Spinor Decomposition in Three-Dimensional Affine Geometry
    Wu, Chengran
    Li, Hongbo
    [J]. ACTA MATHEMATICA SCIENTIA, 2022, 42 (06) : 2301 - 2335
  • [5] AFFINE SPINOR DECOMPOSITION IN THREE-DIMENSIONAL AFFINE GEOMETRY
    吴澄冉
    李洪波
    [J]. Acta Mathematica Scientia, 2022, 42 (06) : 2301 - 2335
  • [6] Affine spinor decomposition in three-dimensional affine geometry
    Chengran Wu
    Hongbo Li
    [J]. Acta Mathematica Scientia, 2022, 42 : 2301 - 2335
  • [7] Three-Dimensional Affine Spatial Logics
    Adam Trybus
    [J]. Logica Universalis, 2022, 16 : 603 - 620
  • [8] Three-Dimensional Affine Spatial Logics
    Trybus, Adam
    [J]. LOGICA UNIVERSALIS, 2022, 16 (04) : 603 - 620
  • [9] Fourier analysis of three-dimensional shapes
    Imiya, A
    [J]. VISION GEOMETRY VII, 1998, 3454 : 87 - 98
  • [10] The Three-Dimensional Shapes of Galaxy Clusters
    Limousin, Marceau
    Morandi, Andrea
    Sereno, Mauro
    Meneghetti, Massimo
    Ettori, Stefano
    Bartelmann, Matthias
    Verdugo, Tomas
    [J]. SPACE SCIENCE REVIEWS, 2013, 177 (1-4) : 155 - 194