SpikChIP: a novel computational methodology to compare multiple ChIP-seq using spike-in chromatin

被引:4
|
作者
Blanco, Enrique [1 ]
Di Croce, Luciano [1 ,2 ,3 ]
Aranda, Sergi [1 ]
机构
[1] Barcelona Inst Sci & Technol, Ctr Genom Regulat CRG, Dr Aiguader 88, Barcelona 08003, Spain
[2] Univ Pompeu Fabra UPF, Barcelona 08002, Spain
[3] Inst Catalana Recerca & Estudis Avancats ICREA, Pg Lluis Co 23, Barcelona 08010, Spain
关键词
DNA ELEMENTS; ENCYCLOPEDIA;
D O I
10.1093/nargab/lqab064
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
In order to evaluate cell- and disease-specific changes in the interacting strength of chromatin targets, ChIPseq signal across multiple conditions must undergo robust normalization. However, this is not possible using the standard ChIP-seq scheme, which lacks a reference for the control of biological and experimental variabilities. While several studies have recently proposed different solutions to circumvent this problem, substantial analytical differences among methodologies could hamper the experimental reproducibility and quantitative accuracy. Here, we propose a computational method to accurately compare ChIP-seq experiments, with exogenous spike-in chromatin, across samples in a genome-wide manner by using a local regression strategy (spikChIP). In contrast to the previous methodologies, spikChIP reduces the influence of sequencing noise of spike-in material during ChIP-seq normalization, while minimizes the overcorrection of non-occupied genomic regions in the experimental ChIP-seq. We demonstrate the utility of spikChIP with both histone and non-histone chromatin protein, allowing us to monitor for experimental reproducibility and the accurate ChIP-seq comparison of distinct experimental schemes. spikChIP software is available on GitHub (https: //github.com/eblancoga/spikChIP).
引用
收藏
页数:15
相关论文
共 20 条
  • [1] Quantitative ChIP-seq by Adding Spike-in from Another Species
    Niu, Kongyan
    Liu, Rui
    Liu, Nan
    BIO-PROTOCOL, 2018, 8 (16):
  • [2] Computational methodology for ChIP-seq analysis
    Hyunjin Shin
    Tao Liu
    Xikun Duan
    Yong Zhang
    XShirley Liu
    Quantitative Biology, 2013, 1 (01) : 54 - 70
  • [3] SpikeFlow: automated and flexible analysis of ChIP-Seq data with spike-in control
    Bressan, Davide
    Fernandez-Perez, Daniel
    Romanel, Alessandro
    Chiacchiera, Fulvio
    NAR GENOMICS AND BIOINFORMATICS, 2024, 6 (03)
  • [4] Protocol to apply spike-in ChIP-seq to capture massive histone acetylation in human cells
    Wu, Di
    Wang, Liguo
    Huang, Haojie
    STAR PROTOCOLS, 2021, 2 (03):
  • [5] ChIPseqSpikeInFree: a ChIP-seq normalization approach to reveal global changes in histone modifications without spike-in
    Jin, Hongjian
    Kasper, Lawryn H.
    Larson, Jon D.
    Wu, Gang
    Baker, Suzanne J.
    Zhang, Jinghui
    Fan, Yiping
    BIOINFORMATICS, 2020, 36 (04) : 1270 - 1272
  • [6] A ChIP-Seq spike-in method enables detection of global histone modification changes across the genome
    Chlamydas, S.
    Egan, B.
    Craske, M.
    Labhart, R.
    Henry, C.
    Kelly, T.
    Guler, G.
    Yuan, C. -C.
    Trojer, P.
    Classon, M.
    EUROPEAN JOURNAL OF CANCER, 2016, 69 : S90 - S90
  • [7] Comparing genome-wide chromatin profiles using ChIP-chip or ChIP-seq
    Johannes, Frank
    Wardenaar, Rene
    Colome-Tatche, Maria
    Mousson, Florence
    de Graaf, Petra
    Mokry, Michal
    Guryev, Victor
    Timmers, H. Th. Marc
    Cuppen, Edwin
    Jansen, Ritsert C.
    BIOINFORMATICS, 2010, 26 (08) : 1000 - 1006
  • [8] A novel statistical method for quantitative comparison of multiple ChIP-seq datasets
    Chen, Li
    Wang, Chi
    Qin, Zhaohui S.
    Wu, Hao
    BIOINFORMATICS, 2015, 31 (12) : 1889 - 1896
  • [9] HMCan: a method for detecting chromatin modifications in cancer samples using ChIP-seq data
    Ashoor, Haitham
    Herault, Aurelie
    Kamoun, Aurelie
    Radvanyi, Francois
    Bajic, Vladimir B.
    Barillot, Emmanuel
    Boeva, Valentina
    BIOINFORMATICS, 2013, 29 (23) : 2979 - 2986
  • [10] Combining multiple ChIP-seq peak detection systems using combinatorial fusion
    Christina Schweikert
    Stuart Brown
    Zuojian Tang
    Phillip R Smith
    D Frank Hsu
    BMC Genomics, 13