SIMPLICITY OF EXTREMAL EIGENVALUES OF THE KLEIN-GORDON EQUATION

被引:3
|
作者
Koppen, Mario [1 ]
Tretter, Christiane [2 ]
Winklmeier, Monika [3 ]
机构
[1] Tech Univ Munich, Ctr Math, Boltzmannstr 3, D-85748 Garching, Germany
[2] Univ Bern, Inst Math, CH-3012 Bern, Switzerland
[3] Univ Los Andes, Dept Math, Bogota 4976, Colombia
基金
瑞士国家科学基金会;
关键词
Klein-Gordon equation; eigenvalue; ground state energy; operator polynomial; SPECTRAL THEORY; DIAMAGNETISM; OPERATORS; PENCILS; STATES;
D O I
10.1142/S0129055X11004382
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the spectral problem associated with the Klein-Gordon equation for unbounded electric potentials such that the spectrum is contained in two disjoint real intervals related to positive and negative energies, respectively. If the two inner boundary points are eigenvalues, we show that these extremal eigenvalues are simple and possess strictly positive eigenfunctions. Examples of electric potentials satisfying these assumptions are given.
引用
收藏
页码:643 / 667
页数:25
相关论文
共 50 条