TRANSFORMATIONS FOR THE PRIZE-COLLECTING STEINER TREE PROBLEM AND THE MAXIMUM-WEIGHT CONNECTED SUBGRAPH PROBLEM TO SAP

被引:3
|
作者
Rehfeldt, Daniel [1 ]
Koch, Thorsten [1 ,2 ]
机构
[1] Tech Univ Berlin, Dept Math, Berlin, Germany
[2] Zuse Inst Berlin, Berlin, Germany
关键词
Prize-collecting Steiner tree problem; Maximum-weight connected subgraph problem; Graph transformations; Dual-ascent heuristics;
D O I
10.4208/jcm.1709-m2017-0002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Transformations of Steiner tree problem variants have been frequently discussed in the literature. Besides allowing to easily transfer complexity results, they constitute a central pillar of exact state-of-the-art solvers for well-known variants such as the Steiner tree problem in graphs. In this article transformations for both the prize-collecting Steiner tree problem and the maximum-weight connected subgraph problem to the Steiner arborescence problem are introduced for the first time. Furthermore, the considerable implications for practical solving approaches will be demonstrated, including the computation of strong upper and lower bounds.
引用
收藏
页码:459 / 468
页数:10
相关论文
共 50 条
  • [1] Reduction techniques for the prize collecting Steiner tree problem and the maximum-weight connected subgraph problem
    Rehfeldt, Daniel
    Koch, Thorsten
    Maher, Stephen J.
    NETWORKS, 2019, 73 (02) : 206 - 233
  • [2] Variations of the prize-collecting Steiner tree problem
    Chapovska, Olena
    Punnen, Abraham P.
    NETWORKS, 2006, 47 (04) : 199 - 205
  • [3] A Matheuristic Algorithm for the Prize-collecting Steiner Tree Problem
    Akhmedov, Murodzhon
    Kwee, Ivo
    Montemanni, Roberto
    2015 3rd International Conference on Information and Communication Technology (ICoICT), 2015, : 408 - 412
  • [4] Algorithms for the Prize-Collecting $k$-Steiner Tree Problem
    Han, Lu
    Wang, Changjun
    Xu, Dachuan
    Zhang, Dongmei
    TSINGHUA SCIENCE AND TECHNOLOGY, 2022, 27 (05) : 785 - 792
  • [5] Solving the prize-collecting Euclidean Steiner tree problem
    Whittle, David
    Brazil, Marcus
    Grossman, Peter A.
    Rubinstein, J. Hyam
    Thomas, Doreen A.
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2022, 29 (03) : 1479 - 1501
  • [6] The fractional prize-collecting Steiner tree problem on trees
    Klau, GW
    Ljubic, I
    Mutzel, P
    Pferschy, U
    Weiskircher, R
    ALGORITHMS - ESA 2003, PROCEEDINGS, 2003, 2832 : 691 - 702
  • [7] Approximation Algorithm for Stochastic Prize-Collecting Steiner Tree Problem
    Sun, Jian
    Sheng, Haiyun
    Sun, Yuefang
    Zhang, Xiaoyan
    ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, AAIM 2019, 2019, 11640 : 261 - 271
  • [8] Algorithms for the Prize-Collecting k-Steiner Tree Problem
    Lu Han
    Changjun Wang
    Dachuan Xu
    Dongmei Zhang
    TsinghuaScienceandTechnology, 2022, 27 (05) : 785 - 792
  • [9] Algorithms for node-weighted Steiner tree and maximum-weight connected subgraph
    Buchanan, Austin
    Wang, Yiming
    Butenko, Sergiy
    NETWORKS, 2018, 72 (02) : 238 - 248
  • [10] An Algorithmic Framework for the Exact Solution of the Prize-Collecting Steiner Tree Problem
    Ivana Ljubić
    René Weiskircher
    Ulrich Pferschy
    Gunnar W. Klau
    Petra Mutzel
    Matteo Fischetti
    Mathematical Programming, 2006, 105 : 427 - 449