Existence ground state solutions for a quasilinear Schrodinger equation with Hardy potential and Berestycki-Lions type conditions

被引:6
|
作者
Hu, Die [1 ]
Zhang, Qi [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasilinear Schrodinger equation; Hardy potential; Ground state solution; Berestycki-Lions type conditions; SOLITON-SOLUTIONS;
D O I
10.1016/j.aml.2021.107615
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the quasilinear Schrodinger equation with a Hardy potential -Delta u + V (x) u - mu u/vertical bar x vertical bar(2) - Delta(u(2)) u = g(u), x is an element of R-N \ {0}, where N >= 3, 0 <= mu < <(mu)over bar>=(N-2)(2)/4, 1/vertical bar x vertical bar(2) is called the Hardy potential. By using Jeanjean's monotonicity trick, we admit a class of ground state solutions for the above problem, under the general Berestycki-Lions type assumptions on the nonlinearity g, as well as some weak assumptions on the potential V. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条