Methane oxidation by anaerobic archaea for conversion to liquid fuels

被引:23
|
作者
Mueller, Thomas J. [1 ]
Grisewood, Matthew J. [1 ]
Nazem-Bokaee, Hadi [1 ]
Gopalakrishnan, Saratram [1 ]
Ferry, James G. [2 ]
Wood, Thomas K. [1 ,2 ]
Maranas, Costas D. [1 ]
机构
[1] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA
关键词
Archaea; Anaerobic oxidation of methane; Anaerobic methanotrophic archaea; ANME; COENZYME-M-REDUCTASE; SULFATE-REDUCING BACTERIA; METHANOTROPHIC ARCHAEA; MICROBIAL COMMUNITIES; ELECTRON-TRANSFER; OXIDIZE METHANE; SEA; METHANOGENESIS; NI; DIVERSITY;
D O I
10.1007/s10295-014-1548-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Given the recent increases in natural gas reserves and associated drawbacks of current gas-to-liquids technologies, the development of a bioconversion process to directly convert methane to liquid fuels would generate considerable industrial interest. Several clades of anaerobic methanotrophic archaea (ANME) are capable of performing anaerobic oxidation of methane (AOM). AOM carried out by ANME offers carbon efficiency advantages over aerobic oxidation by conserving the entire carbon flux without losing one out of three carbon atoms to carbon dioxide. This review highlights the recent advances in understanding the key enzymes involved in AOM (i. e., methyl-coenzyme M reductase), the ecological niches of a number of ANME, the putative metabolic pathways for AOM, and the syntrophic consortia that they typically form.
引用
收藏
页码:391 / 401
页数:11
相关论文
共 50 条
  • [1] Insights into the genomes of archaea mediating the anaerobic oxidation of methane
    Meyerdierks, A
    Kube, M
    Lombardot, T
    Knittel, K
    Bauer, M
    Glöckner, FO
    Reinhardt, R
    Amann, R
    [J]. ENVIRONMENTAL MICROBIOLOGY, 2005, 7 (12) : 1937 - 1951
  • [2] Energy Metabolism during Anaerobic Methane Oxidation in ANME Archaea
    McGlynn, Shawn E.
    [J]. MICROBES AND ENVIRONMENTS, 2017, 32 (01) : 5 - 13
  • [3] Optical sorting and cultivation of denitrifying anaerobic methane oxidation archaea
    Qi, Xiaoqiong
    Carberry, David M.
    Cai, Chen
    Hu, Shihu
    Yuan, Zhiguo
    Dunlop, Halin Rubinsztein
    Guo, Jianhua
    [J]. BIOMEDICAL OPTICS EXPRESS, 2017, 8 (02): : 934 - 942
  • [4] A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea
    Chistoserdova, L
    Vorholt, JA
    Lidstrom, ME
    [J]. GENOME BIOLOGY, 2005, 6 (02)
  • [5] Archaea catalyze iron-dependent anaerobic oxidation of methane
    Ettwig, Katharina F.
    Zhu, Baoli
    Speth, Daan
    Keltjens, Jan T.
    Jetten, Mike S. M.
    Kartal, Boran
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (45) : 12792 - 12796
  • [6] Biogeochemical evidence that thermophilic archaea mediate the anaerobic oxidation of methane
    Schouten, S
    Wakeham, SG
    Hopmans, EC
    Damsté, JSS
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (03) : 1680 - 1686
  • [7] A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea
    Ludmila Chistoserdova
    Julia A Vorholt
    Mary E Lidstrom
    [J]. Genome Biology, 6
  • [8] Bacteria and archaea involved in anaerobic mercury methylation and methane oxidation in anaerobic sulfateerich reactors
    Du, Hongxia
    Sun, Tao
    Liu, Yang
    An, Siwei
    Xie, Haiying
    Wang, Dingyong
    Igarashi, Yasuo
    Imanaka, Tadayuki
    Luo, Feng
    Ma, Ming
    [J]. CHEMOSPHERE, 2021, 274
  • [9] Anaerobic Oxidation of Methane Coupled with Dissimilatory Nitrate Reduction to Ammonium Fuels Anaerobic Ammonium Oxidation
    Nie, Wen-Bo
    Ding, Jie
    Xie, Guo-Jun
    Yang, Lu
    Peng, Lai
    Tan, Xin
    Liu, Bing-Feng
    Xing, De-Feng
    Yuan, Zhiguo
    Ren, Nan-Qi
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2021, 55 (02) : 1197 - 1208
  • [10] Evidence for anaerobic methane oxidation by archaea in euxinic waters of the Black Sea
    Schouten, S
    Wakeham, SG
    Damsté, JSS
    [J]. ORGANIC GEOCHEMISTRY, 2001, 32 (10) : 1277 - 1281