Generalized Riesz Systems and Quasi Bases in Hilbert Space

被引:5
|
作者
Bagarello, F. [1 ,2 ]
Inoue, H. [3 ]
Trapani, C. [4 ]
机构
[1] Univ Palermo, Dipartimento Ingn, I-90128 Palermo, Italy
[2] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy
[3] Dalichi Univ Pharm, Ctr Advancing Pharmaceut Educ, Minami Ku, 22-1 Tamagawa Cho, Fukuoka 8158511, Japan
[4] Univ Palermo, Dipartimento Matemat & Informat, I-90123 Palermo, Italy
关键词
42B35; 47A07;
D O I
10.1007/s00009-019-1456-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this article is twofold. First of all, the notion of (D,E-quasi basis is introduced for a pair (D,E) of dense subspaces of Hilbert spaces. This consists of two biorthogonal sequences {phi n}{psi n}\\, such that n-ary sumation n=0 infinity x,phi n psi n,y=x,yfor all x is an element of Dy is an element of E. Second, it is shown that if biorthogonal sequences {phi n}and {psi n} form a (D,E)-quasi basis, then they are generalized Riesz systems.The latter play an interesting role for the construction of non-self-adjoint Hamiltonians and other physically relevant operators.
引用
收藏
页数:17
相关论文
共 50 条