Pseudofinite groups and VC-dimension

被引:3
|
作者
Conant, Gabriel [1 ]
Pillay, Anand [2 ]
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
[2] Univ Notre Dame, Dept Math, Notre Dame, IN 46656 USA
关键词
Pseudofinite groups; VC-dimension; NIP formulas;
D O I
10.1142/S0219061321500094
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop "local NIP group theory" in the context of pseudofinite groups. In particular, given a sufficiently saturated pseudofinite structure G expanding a group, and left invariant NIP formula delta(x; (y) over bar), we prove various aspects of "local fsg" for the right-stratified formula delta(r) (x; (y) over bar, u) := delta(x . u; (y) over bar). This includes a delta(r)-type-definable connected component, uniqueness of the pseudofinite counting measure as a left-invariant measure on delta(r)-formulas and generic compact domination for delta(r)-definable sets.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Structure and regularity for subsets of groups with finite VC-dimension
    Conant, G.
    Pillay, A.
    Terry, C.
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2022, 24 (02) : 583 - 621
  • [2] On the VC-Dimension of Binary Codes
    Hu, Sihuang
    Weinberger, Nir
    Shayevitz, Ofer
    [J]. 2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 594 - 598
  • [3] VC-dimension of sets of permutations
    Raz, R
    [J]. COMBINATORICA, 2000, 20 (02) : 241 - 255
  • [4] Bracketing entropy and VC-dimension
    Malykhin, Yu. V.
    [J]. MATHEMATICAL NOTES, 2012, 91 (5-6) : 800 - 807
  • [5] Bracketing entropy and VC-dimension
    Yu. V. Malykhin
    [J]. Mathematical Notes, 2012, 91 : 800 - 807
  • [6] The VC-dimension of Sperner systems
    Greco, G
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1999, 87 (01) : 22 - 32
  • [7] On the VC-dimension of uniform hypergraphs
    Mubayi, Dhruv
    Zhao, Yi
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2007, 25 (01) : 101 - 110
  • [8] ON THE VC-DIMENSION OF BINARY CODES
    Hu, Sihuang
    Weinberger, Nir
    Shayevitz, Ofer
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (03) : 2161 - 2171
  • [9] VC-Dimension of Rule Sets
    Yildiz, Olcay Taner
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 3576 - 3581
  • [10] VC-Dimension of Sets of Permutations
    Ran Raz
    [J]. Combinatorica, 2000, 20 : 241 - 255