lower and upper bounds;
a general form of Jordan's inequality;
Yang Le inequality;
the Spherical Bessel Functions (SBFs);
the SBFs of the first kind j(n)(x) = root pi/2xJ(n+1/2) (x);
a new infinite series for (sin x)/x;
D O I:
10.1016/j.camwa.2007.10.004
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this work, a general form of Jordan's inequality: [GRAPHICS] and N >= 0 is a natural number. The applications of the above result give the general improvement of the Yang Le inequality and a new infinite series (sin x)/x = Sigma(infinity)(n=0)a(n)(pi(2)-4x(2))(n) for 0 < vertical bar x vertical bar <= pi/2. (C) 2007 Elsevier Ltd. All rights reserved.
机构:
Zhongyuan Univ Technol, Coll Informat & Business, Zhengzhou 450007, Henan Province, Peoples R ChinaHenan Polytechn Univ, Res Inst Math Inequal Theory, Jiaozuo City 454010, Henan Province, Peoples R China
Niu, Da-Wei
Huo, Zhen-Hong
论文数: 0引用数: 0
h-index: 0
机构:
Zhongyuan Univ Technol, Coll Informat & Business, Zhengzhou 450007, Henan Province, Peoples R ChinaHenan Polytechn Univ, Res Inst Math Inequal Theory, Jiaozuo City 454010, Henan Province, Peoples R China
Huo, Zhen-Hong
Cao, Jian
论文数: 0引用数: 0
h-index: 0
机构:
E China Normal Univ, Dept Math, Shanghai 200241, Peoples R ChinaHenan Polytechn Univ, Res Inst Math Inequal Theory, Jiaozuo City 454010, Henan Province, Peoples R China
机构:
Univ Belgrade, Sch Elect Engn, Bulevar Kralja Aleksandra 73, Belgrade 11000, SerbiaUniv Belgrade, Sch Elect Engn, Bulevar Kralja Aleksandra 73, Belgrade 11000, Serbia
Micovic, Milos
Malesevic, Branko
论文数: 0引用数: 0
h-index: 0
机构:
Univ Belgrade, Sch Elect Engn, Bulevar Kralja Aleksandra 73, Belgrade 11000, SerbiaUniv Belgrade, Sch Elect Engn, Bulevar Kralja Aleksandra 73, Belgrade 11000, Serbia