Projected changes of temperature extremes over nine major basins in China based on the CMIP5 multimodel ensembles

被引:28
|
作者
Xu, Kai [1 ]
Wu, Chuanhao [1 ]
Hu, Bill X. [1 ]
机构
[1] Jinan Univ, Inst Groundwater & Earth Sci, Guangzhou 510632, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Temperature extremes; Projected changes; ETCCDI; CMIP5; China; BEIJIANG RIVER-BASIN; CLIMATE-CHANGE; PRECIPITATION EXTREMES; FLOOD FREQUENCY; ZHUJIANG RIVER; TRENDS; MODEL; IMPACTS; UNCERTAINTIES; SCENARIOS;
D O I
10.1007/s00477-018-1569-2
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Based on the outputs of 27 global climate models (GCMs) from the Coupled Model Inter-comparison Project Phase 5 (CMIP5), projected changes of extreme temperature events have been analyzed over nine river basins in China by the end of the twenty-first century relative to the reference period 1961-1990. The temporal and spatial changes and their projection uncertainty are studied using the extreme temperature indices defined by the Expert Team of Climate Change Detection and Indices (ETCCDI) under two Representative Concentration Pathways (RCPs). The model simulations predict a general increasing (decreasing) trend in warm (cold) extremes over China in the twenty-first century, with more pronounced warming trend under a higher emission scenario. The projected changes in cold and warm extremes exhibit a large difference in spatial patterns. The high-latitude and high-elevation regions of China (e.g., Continental and Southwest basins) are projected to respond more strongly to changes in cold extremes, while eastern and southern China (e.g., Yangtze River and Pearl River basins) tend to be more sensitive to the increases in warm extremes. In general, projected changes in cold indices based on minimum temperature tend to be more pronounced than in warm indices based on maximum temperature. Uncertainty analysis shows a large difference among the 27 GCMs under 2 RCP scenarios, and the uncertainty ranges tend to be larger under a higher emission scenario. Overall, the uncertainties in the emission scenarios are smaller than those from the climate models in the near future period. However, for the long-term climate projections (e.g., by the end of the twenty-first century), the projected difference under various emission scenarios tends to be larger than those by different climate models and hence can be the dominant contributor to the projection uncertainty of temperature indices.
引用
收藏
页码:321 / 339
页数:19
相关论文
共 50 条
  • [1] Projected changes of temperature extremes over nine major basins in China based on the CMIP5 multimodel ensembles
    Kai Xu
    Chuanhao Wu
    Bill X. Hu
    [J]. Stochastic Environmental Research and Risk Assessment, 2019, 33 : 321 - 339
  • [2] Projection and uncertainty of precipitation extremes in the CMIP5 multimodel ensembles over nine major basins in China
    Xu, Kai
    Xu, Bingbo
    Ju, Jiali
    Wu, Chuanhao
    Dai, Heng
    Hu, Bill X.
    [J]. ATMOSPHERIC RESEARCH, 2019, 226 : 122 - 137
  • [3] Projected Changes in Temperature and Precipitation Extremes in China by the CMIP5 Multimodel Ensembles
    Zhou, Botao
    Wen, Qiuzi Han
    Xu, Ying
    Song, Lianchun
    Zhang, Xuebin
    [J]. JOURNAL OF CLIMATE, 2014, 27 (17) : 6591 - 6611
  • [4] Historical and Projected Changes in Temperature Extremes Over China and the Inconsistency Between Multimodel Ensembles and Individual Models From CMIP5 and CMIP6
    Yang, Yunfan
    Zhang, Yuanjie
    Gao, Zhiqiu
    Pan, Zaitao
    Zhang, Xuefen
    [J]. EARTH AND SPACE SCIENCE, 2023, 10 (02)
  • [5] Projected Changes and Time of Emergence of Temperature Extremes Over Australia in CMIP5 and CMIP6
    Deng, Xu
    Perkins-Kirkpatrick, Sarah E.
    Alexander, Lisa, V
    Stark, Clair
    [J]. EARTHS FUTURE, 2022, 10 (09)
  • [6] Application of the Bias Correction and Spatial Downscaling Algorithm on the Temperature Extremes From CMIP5 Multimodel Ensembles in China
    Xu, Lianlian
    Wang, Aihui
    [J]. EARTH AND SPACE SCIENCE, 2019, 6 (12) : 2508 - 2524
  • [7] CMIP5 projected changes in temperature and precipitation in arid and humid basins
    Boli Zhu
    Lianqing Xue
    Guanghui Wei
    Luocheng Zhang
    Xinfang Chen
    [J]. Theoretical and Applied Climatology, 2019, 136 : 1133 - 1144
  • [8] CMIP5 projected changes in temperature and precipitation in arid and humid basins
    Zhu, Boli
    Xue, Lianqing
    Wei, Guanghui
    Zhang, Luocheng
    Chen, Xinfang
    [J]. THEORETICAL AND APPLIED CLIMATOLOGY, 2019, 136 (3-4) : 1133 - 1144
  • [9] Assessment of Uncertainties in Projected Temperature and Precipitation over the Arabian Peninsula Using Three Categories of Cmip5 Multimodel Ensembles
    Almazroui M.
    Nazrul Islam M.
    Saeed S.
    Alkhalaf A.K.
    Dambul R.
    [J]. Earth Systems and Environment, 2017, 1 (2)
  • [10] Future changes in climate extremes over Equatorial East Africa based on CMIP5 multimodel ensemble
    Ongoma, Victor
    Chen, Haishan
    Gao, Chujie
    Nyongesa, Aston Matwai
    Polong, Francis
    [J]. NATURAL HAZARDS, 2018, 90 (02) : 901 - 920