Fiber Optical Cable and Connector System (FOCCoS) for PFS/Subaru

被引:6
|
作者
de Oliveira, Antonio Cesar [1 ]
de Oliveira, Ligia Souza [2 ]
de Arruda, Marcio V. [1 ]
Marrara, Lucas Souza [2 ]
dos Santos, Leandro H. [1 ]
Ferreira, Decio [1 ]
dos Santos, Jesulino B. [1 ]
Rosa, Josimar A. [1 ]
Junior, Orlando V. [1 ]
Pereira, Jeferson M. [1 ]
Castilhol, Bruno [1 ]
Gneiding, Clemens [1 ]
Junior, Laerte S. [3 ]
de Oliveira, Claudia M. [3 ]
Gunn, James E. [4 ]
Ueda, Akitoshi [5 ]
Takato, Naruhisa [5 ]
Shimono, Atsushi [6 ]
Sugai, Hajime [6 ]
Karoji, Hiroshi [6 ]
Kimura, Masahiko [6 ]
Tamura, Naoyuki [6 ]
Wang, Shiang-Yu [7 ]
Murray, Graham [8 ]
Le Mignant, David [9 ]
Madec, Fabrice [9 ]
Jaquet, Marc [9 ]
Vives, Sebastien [9 ]
Fisher, Charlie [10 ]
Braunm, David [10 ]
Schwochertm, Mark [10 ]
Reiley, Daniel J. [11 ]
机构
[1] MCT LNA, Itajuba, MG, Brazil
[2] OIO Oliveira Instrumentacao Opt Ltda, Sao Paulo, SP, Brazil
[3] Univ Sao Paulo, IAG, Inst Astron Geofis & Ciencias Atmosfer, BR-05508 Sao Paulo, SP, Brazil
[4] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
[5] Natl Astron Observ Japan, Subaru Telescope, Mitaka, Tokyo, Japan
[6] Univ Tokyo, Kav li Inst Phys & Math Univ WPI, Tokyo 1138654, Japan
[7] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan
[8] Univ Durham, Ctr Adv Instrumentat, Durham, England
[9] Observ Astron Marseille Provence, Lab Astrophys Marseille, Marseille, France
[10] Jet Prop Lab, Pasadena, CA USA
[11] CALTECH, Opt Observ, Pasadena, CA 91125 USA
关键词
Spectrograph; Optical Fibers; Multi-fibers connector;
D O I
10.1117/12.2056888
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
FOCCoS, "Fiber Optical Cable and Connector System" has the main function of capturing the direct light from the focal plane of Subaru Telescope using optical fibers, each one with a microlens in its tip, and conducting this light through a route containing connectors to a set of four spectrographs. The optical fiber cable is divided in 3 different segments called Cable A, Cable B and Cable C. Multi-fibers connectors assure precise connection among all optical fibers of the segments, providing flexibility for instrument changes. To assure strong and accurate connection, these sets are arranged inside two types of assemblies: the Tower Connector, for connection between Cable C and Cable B; and the Gang Connector, for connection between Cable B and Cable A. Throughput tests were made to evaluate the efficiency of the connections. A lifetime test connection is in progress. Cable C is installed inside the PFI, Prime Focus Instrument, where each fiber tip with a microlens is bonded to the end of the shaft of a 2-stage piezo-electric rotatory motor positioner; this assembly allows each fiber to be placed anywhere within its patrol region, which is 9.5mm diameter.. Each positioner uses a fiber arm to support the ferrule, the microlens, and the optical fiber. 2400 of these assemblies are arranged on a motor bench plate in a hexagonal-closed-packed disposition. All optical fibers from Cable C, protected by tubes, pass through the motors' bench plate, three modular plates and a strain relief box, terminating at the Tower Connector. Cable B is permanently installed at Subaru Telescope structure, as a link between Cable C and Cable A. This cable B starts at the Tower Connector device, placed on a lateral structure of the telescope, and terminates at the Gang Connector device. Cable B will be routed to minimize the compression, torsion and bending caused by the cable weight and telescope motion. In the spectrograph room, Cable A starts at the Gang Connector, crosses a distribution box and terminates in a slit device. Each slit device receives approximately 600 optical fibers, linearly arrayed in a curve for better orientation of the light to the spectrograph collimator mirror. Four sets of Gang Connectors, distribution boxes and Slit devices complete one Cable A. This paper will review the general design of the FOCCoS subsystem, methods used to manufacture the involved devices, and the needed tests results to evaluate the total efficiency of the set.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Prime Focus Spectrograph (PFS): Fiber Optical Cable and Connector System (FOCCoS) - Integration
    de Oliveira, Antonio Cesar
    de Oliveira, Ligia Souza
    Ferreira, Decio
    Marrara, Lucas Souza
    dos Santos, Leandro Henrique
    Rosa, Josimar Aparecido
    de Almeida, Rodrigo Pedro
    da Costa, Ricardo Luciano
    Gunn, James E.
    Moritani, Yuki
    Tamura, Naoyuki
    Takato, Naruhisa
    Sodre, Laerte Junior
    Murray, Graham
    le Mignant, David
    Madec, Fabrice
    Dohlen, Kjetil
    Wang, Shiang-Yu
    Kimura, Masahiko
    Chang, Yin-Chang
    Chen, Hsin-Yo
    Reiley, Daniel J.
    Roberts, Mitsko
    Belland, Brent
    GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY IX, 2022, 12184
  • [2] FOCCoS for Subaru PFS
    de Oliveira, Antonio Cesar
    de Oliveira, Ligia Souza
    de Arruda, Marcio Vital
    dos Santos, Jesulino Bispo
    Marrara, Lucas Souza
    de Paula Macanhan, Vanessa Bawden
    de Carvalho Oliveira, Joao Batista
    Vilaca, Rodrigo de Paiva
    Dominici, Tania Pereira
    Sodre Junior, Laerte
    de Oliveira, Claudia Mendes
    Karoji, Hiroshi
    Sugai, Hajime
    Shimono, Atsushi
    Tamura, Naoyuki
    Takato, Naruhisa
    Ueda, Akitoshi
    GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY IV, 2012, 8446
  • [3] Slit device for FOCCoS - PFS - Subaru
    de Oliveira, Antonio Cesar
    Gunn, James E.
    de Oliveira, Ligia Souza
    de Arruda, Marcio Vital
    Marrara, Lucas Souza
    dos Santos, Leandro Henrique
    Ferreira, Decio
    dos Santos, Jesulino Bispo
    Rosa, Josimar Aparecido
    Ribeiro, Flavio Felipe
    Vilaca, Rodrigo de Paiva
    Verducci Junior, Orlando
    Sodre Junior, Laerte
    de Oliveira, Claudia Mendes
    ADVANCES IN OPTICAL AND MECHANICAL TECHNOLOGIES FOR TELESCOPES AND INSTRUMENTATION, 2014, 9151
  • [4] Multi-fibers connectors systems for FOCCoS-PFS-Subaru
    de Oliveira, Antonio Cesar
    de Oliveira, Ligia Souza
    Marrara, Lucas Souza
    dos Santos, Leandro Henrique
    de Arruda, Marcio Vital
    dos Santos, Jesulino Bispo
    Ferreira, Decio
    Rosa, Josimar Aparecido
    Vilaca, Rodrigo de Paiva
    Sodre Junior, Laerte
    de Oliveira, Claudia Mendes
    Gunn, James E.
    ADVANCES IN OPTICAL AND MECHANICAL TECHNOLOGIES FOR TELESCOPES AND INSTRUMENTATION, 2014, 9151
  • [5] Polish device for FOCCoS/PFS slit system
    de Oliveira, Antonio Cesar
    de Oliveira, Ligia Souza
    de Arrudal, Marcio Vital
    Marrara, Lucas Souza
    dos Santos, Leandro Henrique
    Ferreira, Decio
    dos Santos, Jesulino Bispo
    Vilaca, Rodrigo de Paiva
    Rosa, Josimar Aparecido
    Sodre Junior, Laerte
    de Oliveira, Claudia Mendes
    ADVANCES IN OPTICAL AND MECHANICAL TECHNOLOGIES FOR TELESCOPES AND INSTRUMENTATION, 2014, 9151
  • [6] OPTICAL FIBER CABLE AND CONNECTOR TECHNOLOGY FOR FTTH NETWORKS
    TOMITA, S
    MATSUMOTO, M
    HAIBARA, T
    NAKASHIMA, T
    KIHARA, M
    IEICE TRANSACTIONS ON COMMUNICATIONS, 1992, E75B (09) : 862 - 870
  • [7] Permanent optical fiber cable for Prime Focus Spectrograph and Subaru telescope "Cable B"
    de Oliveira, Antonio Cesar
    de Oliveira, Ligia Souza
    Ferreira, Decio
    Marrara, Lucas Souza
    dos Santos, Leandro Henrique
    Rosa, Josimar Aparecido
    de Almeida, Rodrigo Pedro
    da Costa, Ricardo Luciano
    Verducci, Orlando
    Gunn, James E.
    Murray, Graham
    Moritani, Yuki
    Tamura, Naoyuki
    Takato, Naruhisa
    Tamura, Tomonori
    Shimono, Atsushi
    Sodre Junior, Laerte
    Castilho, Bruno
    GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY VII, 2018, 10702
  • [8] ACCURATE SILICON SPACER CHIPS FOR AN OPTICAL FIBER CABLE CONNECTOR
    SCHROEDER, CM
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1977, 67 (05) : 708 - 708
  • [9] ACCURATE SILICON SPACER CHIPS FOR AN OPTICAL-FIBER CABLE CONNECTOR
    SCHROEDER, CM
    BELL SYSTEM TECHNICAL JOURNAL, 1978, 57 (01): : 91 - 97
  • [10] OPTICAL-FIBER FANOUT CONNECTOR FOR 10-FIBER RIBBON CABLE TERMINATION
    NAGASAWA, S
    SATAKE, T
    SANKAWA, I
    ARIOKA, R
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 1986, 4 (08) : 1243 - 1247